
BROUGHT TO YOU IN PARTNERSHIP WITH

1

395

 © DZONE | REFCARD | MARCH 2024

Open Source Migration
Practices and Patterns

NUWAN DIAS
DEPUTY CTO, WSO2

CONTENTS

• Benefits of Migrating to Open Source

− Cost-Effectiveness
− Flexibility
− Security and Transparency
− Innovation
− Common Software Challenges

Addressed By Open Source

• Core Practices for Open-Source
Migrations

− Migrating to Open-Source
Databases

− Managing Software Dependencies
− Security Vulnerabilities & Scanning
− Managing Software Licenses

• Conclusion

The software landscape has undergone a significant shift in recent

years, witnessing the burgeoning popularity of open-source software

(OSS). This collaborative development model — where the source code

is freely accessible and modifiable — has revolutionized how software

is built, distributed, and utilized. From powering critical infrastructure

to fueling cutting-edge innovations, OSS has become a significant force

in the modern world.

This Refcard delves into the key characteristics and advantages of

open-source software, exploring its impact on various aspects of

software development and deployment. We'll examine the benefits of

cost-effectiveness, flexibility, and security offered by OSS, while also

acknowledging potential challenges and best practices for responsible

adoption.

BENEFITS OF MIGRATING TO OPEN SOURCE
In today's technology landscape, organizations are constantly seeking

ways to optimize efficiency, agility, and innovation. Open source is a

collaborative development model, offering a powerful alternative to

traditional, closed-source software. Migrating to open source presents

a wealth of benefits, from significant cost savings and enhanced

security to increased flexibility and a vibrant community for support

and collaboration. In this section, we discuss some of the key benefits

of migrating to open source.

COST-EFFECTIVENESS
Open-source software allows your organization to be significantly cost-

effective. Specifically, OSS:

• Eliminates licensing fees and allows customization, reducing

reliance on expensive vendors.

• Often has lower hardware requirements, saving on

infrastructure costs.

FLEXIBILITY
Open-source software offers organizations a flexible and adaptable

foundation for their technology needs, empowering them to take

control, solve problems faster, and scale efficiently.

OSS makes organizations much more flexible by enabling:

• Customizable code, which allows organizations to tailor the

software to their specific needs.

• Seamless integration with other systems, thanks to open

standards.

• Freedom from vendor lock-in, which fosters better negotiating

power and agility.

SECURITY AND TRANSPARENCY
In today's digital world, security and transparency are paramount for

any organization. OSS steps up to the challenge by offering a unique

https://www.instaclustr.com/resources/the-benefits-of-open-source-and-the-risks-of-open-core/?utm_medium=referral&utm_source=dzone&utm_campaign=spot-brand-brand-24Q4-ww-aware-content-icosvsocwp&utm_content=instaclustr-wp

https://www.instaclustr.com/contact-us/?utm_medium=referral&utm_source=dzone&utm_campaign=spot-brand-brand-24Q4-ww-aware-content-iccontactus&utm_content=instaclustr-contact-us

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | OPEN SOURCE MIGR ATION PR ACTICES AND PATTERNS

 © DZONE | REFCARD | MARCH 2024 3

perspective on both. It helps organizations become more secure and

transparent by:

• "Many Eyes" principle: Large developer communities lead to

quicker identification and resolution of vulnerabilities.

• Community-driven security: Proactive vulnerability tracking

and knowledge sharing.

• Customizable security: Customizable security and code

transparency enable organizations to take control of their

security posture.

INNOVATION
Another benefit of adopting open source is the level of innovation

opportunities it offers for organizations. These opportunities open

doors for higher levels of creativity in solutions offered by organizations.

Collaboration within the open-source community fuels continuous

learning and innovation, keeping organizations at the forefront by:

• Access to a vast pool of talent and expertise through the global

open-source community.

• Rapid prototyping and experimentation with new technologies

and ideas.

• A shared codebase, which serves as a springboard for

innovation.

• Fostering a culture of openness and knowledge sharing, leading

to groundbreaking innovations.

While open source benefits organizations in the various forms

mentioned above, it also benefits organizations to navigate through

key challenges that the modern software industry faces, which will be

further explored below.

COMMON SOFTWARE CHALLENGES ADDRESSED
BY OPEN SOURCE
Modern enterprises face a lot of challenges with regards to proprietary

software. These come in the flavors of cost, sociocultural and

geographic impacts, and market conditions that make it challenging to

run a viable business.

UNPREDICTABLE COSTS
Cloud services can have complex pricing and unexpected usage spikes,

hindering budgeting and planning. OSS offers cost stability with

transparent pricing and customizable solutions.

SOCIOCULTURAL AND GEOGRAPHIC IMPACTS
Reliance on proprietary software can be disrupted by sociocultural

and/or geographic requirements. OSS offers:

• Sovereignty: Control over deployment and maintenance,

reducing reliance on specific countries.

• Continuity: Ability to "fork" projects to maintain critical

software, even if original projects are sanctioned.

• Vendor independence: Freedom from vendor limitations

through globally accessible code.

• Community support: Access to a global support network even

if vendor support is unavailable.

MARKET CONDITIONS
Open source helps navigate economic challenges through:

• Cost control: Eliminates licensing fees and promotes flexibility,

freeing resources for innovation.

• Agility and adaptability: Allows rapid adaptation to changing

market demands.

• Resilience: Reduces dependencies on specific vendors or

regions, ensuring technology availability during disruptions.

OSS provides a valuable alternative for organizations seeking

cost-effective, flexible, and secure software solutions in today's

unpredictable environment.

CORE PRACTICES FOR OPEN-SOURCE
MIGRATIONS
In this section, we will be looking at the key practices to consider when

migrating to using open-source software. We will be evaluating data

migration strategies, open-source software dependencies, security

vulnerabilities, and open-source licensing.

MIGRATING TO OPEN-SOURCE DATABASES
Migrating to open-source databases presents a compelling option

for organizations seeking several key benefits such as reduced costs,

enhanced security, scalability, flexibility, and so on.

SELECTING THE RIGHT DATABASE
Selecting the proper database for your application needs to be the first

and most important decision to make before considering a migration

to an open-source database. There are several factors to consider when

selecting the right database.

Table 1: Key considerations for selecting the right database

KEY
CONSIDERATIONS

DETAILS

Nature of processed
data

Ensure the database adheres to these
ramifications:

• Structured data: Postgres, MySQL

• Document-oriented data: MongoDB,
CouchDB

• Column-oriented data: Apache Cassandra,
Apache HBase

• Key-value pairs: Redis, Memcached

• Graph data: Neo4j, Dgraph (for social media
sites, recommendation systems, etc.)

TABLE 1 CONTINUES ON NEXT PAGE

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | OPEN SOURCE MIGR ATION PR ACTICES AND PATTERNS

 © DZONE | REFCARD | MARCH 2024 4

Read-write
operations

Consider your application's read-write needs.
Relational databases might not be ideal for
massive write rates due to their slower nature, a
side effect of the data being structural. Explore
alternatives like Redis or Cassandra for high-
speed write requirements.

Replication
requirements

Evaluate data replication requirements before
migrating to an open-source database. The
number and type of replicas (read-write vs. read-
only) are crucial factors:

• All replicas read-write: Cassandra might be
suitable.

• A single read-write replica: Postgres or
MySQL with master-slave replication can
suffice.

Consistency models Open-source databases offer different
consistency models:

• Eventual consistency (Cassandra):
Acceptable delay for data synchronization
across all nodes. Prioritizes availability and
scale.

• Strong consistency (Postgres/MySQL):
Synchronous replication ensures data
consistency across nodes. Prioritizes data
integrity and accuracy.

Data requirements • Data availability: Choose Cassandra if
availability is crucial.

• Data accuracy: Opt for Postgres/MySQL for
high accuracy requirements (e.g., financial
transactions).

Master-Master
replication

Postgres and MySQL offer global read-write
(master-master replication) but require careful
data design to avoid conflicts.

Back-ups and
recovery

Regardless of the database type, understand
the back-up and recovery process for your
open-source solution. Consider acquiring or
developing the necessary skills.

If you are using a database for caching purposes
(e.g., Redis) consider the following:

• Caching: Consider if you need to persist the
cache when using the database primarily for
caching purposes.

• In-memory: Running your database
completely in-memory can be sufficient and
cost-effective for specific systems that rely
solely on in-memory data.

• Disk-level guarantees: Some systems require
data to persist on disk to function correctly,
even after the database restarts and loses
in-memory data.

MIGRATING DATA SUCCESSFULLY
If you are already using a database in production and thinking of

switching to an open-source database, it is important to thoroughly

think of how you are going to manage the cut-over to the new system

(database). Failing to think through data migration strategies could

result in challenges such as data loss and corruption, application

downtimes, performance issues, and so on. Whatever data migration

strategy is put in place, it is critically important to have a roll-back plan

in case something goes wrong.

A typical data migration process is depicted in Figure 1 below.

Figure 1: Typical data migration process

For high availability and scalability, an application usually consists

of more than one running application instance. These application

instances are depicted as Pod 1, Pod 2, and Pod 3 in Figure 1.

The migration process is described in greater detail below:

1. t0: The migration starts by copying all data from the old

database to the new database.

KEY
CONSIDERATIONS

DETAILS

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | OPEN SOURCE MIGR ATION PR ACTICES AND PATTERNS

 © DZONE | REFCARD | MARCH 2024 5

2. t1: Once data copying is complete, start switching the

application pods to point to the new database.

 − Start the bi-directional data sync just before the application

pods start switching. This way, new data created by

application pods that are still pointing to the old database

(Pod 1 and Pod 2) is copied to the new database, and data

created in the new database is copied to the old.

3. t2: Once all the application pods have switched to the new

database, start tests to ensure the migration is successful.

 − Keep syncing data from the new database to the old. This

ensures that the application pods can switch back (roll-

back) to the old database without any data loss in case

something goes wrong.

4. t3: Once all tests are complete, stop the data sync and remove

the old database.

CORE DATA MIGRATION PRACTICES
In this subsection, we will consider different data migration strategies,

applications, and suitability.

CORE
PRACTICES
FOR DATA
MIGRATION

DESCRIPTION

Big Bang This involves migrating all data from one database
to another in a single, coordinated operation. A "rip-
and-replace" approach, the old system is swapped
entirely for the new one in a short timeframe. Per
Figure 1, this approach would mean that you go
directly from t0 to t3, thus skipping t1 and t2.

While Big Bang is the simplest and easiest for
migrating data, however, it is only practical in
situations where the time difference between t3
and t0 is considerably low and the application can
experience downtime during that period. A slight
deviation of this can be to run the application in
read-only mode during t0 and t3. This way, no
new data is created during the migration period,
resulting in partial uptime while still eliminating
data sync (t1 and t2) processes.

Trickle migration Also known as phased migration or incremental
migration, this is an approach that breaks down the
data migration process into smaller, manageable
stages. Instead of transferring all data in one go like
the Big Bang method, trickle migration transfers
data in multiple phases, often spread across a longer
timeframe.

If the data in your organization is complex and
large, trickle migration can help reduce or eliminate
downtimes by phasing out the migration process.
This approach requires being able to run the
application in small silos where certain parts of
the application are working with the new database
while some other parts are working with the old.

Hybrid migration Hybrid migration offers the best of both Big Bang
and trickle migration techniques. Hybrid migration
is divided into two distinct phases:

• Phase 1: Initial Bulk Transfer (Big Bang element)
— A significant portion of the data (often the
most critical or time-sensitive) is transferred
in a single operation, similar to the Big Bang
method. This phase aims to quickly migrate the
core data and establish basic functionality on
the new system.

• Phase 2: Trickle Migration of Remaining
Data — The remaining data, often less critical
or easier to manage, is migrated in smaller,
controlled batches, similar to the trickle
approach. This phase allows for more granular
control, validation, and adjustments during the
migration process.

Change Data
Capture (CDC)

The CDC-based data migration approach is what
we discussed in Figure 1. For syncing data from
one database to the other, a CDC approach is used.
Compared to Big Bang or trickle, the CDC approach
is complicated and requires careful planning. The
advantage it provides over the rest is that it offers
a seamless, zero-downtime migration possibility.
For scenarios where the application availability is
crucial, a CDC-based approach is the best suited.

Golden record
migration

This approach focuses on migrating the most
accurate and complete representation of each data
point from the source system to the target system.
This approach leverages the principles of master
data management (MDM), specifically the concept of
a "golden record."

The application needs to be aware of both the
source and target databases at the same time. When
the application is requested for a particular record,
it fetches it from the source database, transforms it,
and inserts it into the target database. From there
onwards, the application looks up that particular
record in the target database only. This approach
is suitable when the organization needs to cleanse
and/or reformat data in the source database.

MANAGING SOFTWARE DEPENDENCIES
In today’s world, no software stands alone. The software we build will

always depend upon components built and maintained by others.

Similarly, the software we produce will be used by someone else either

via integration or inclusion (libraries). This is called the software

supply chain.

While publicly accessible for anyone to contribute, software repositories

like npm or Maven Central for JavaScript and Java packages respectively

can harbor malicious code despite scanning efforts. These attacks,

where harmful code is snuck into public repositories, are known as

software supply chain attacks. TABLE 1 CONTINUES ON NEXT PAGE

CORE
PRACTICES
FOR DATA
MIGRATION

DESCRIPTION

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | OPEN SOURCE MIGR ATION PR ACTICES AND PATTERNS

 © DZONE | REFCARD | MARCH 2024 6

As illustrated in Figure 2, the project depends on a software library,

which, in turn, depends on other software libraries, out of which one

of them is malicious. This makes the project vulnerable to the attack

through the malicious software dependency.

Figure 2: Illustration of a software supply chain attack

MAINTENANCE
Using outdated software is a key contributor to technical debt. It also

increases your risk of being attacked since old software may contain

vulnerabilities that have been identified and fixed in newer versions. To

be kept safe from outdated software, you always need to be up to date.

DEPENDENCY MANAGEMENT, TOOLS, AND TECHNIQUES
Managing dependencies in a software project is no trivial task. Any

reasonably sized software project will have over a hundred software

dependencies. Keeping track of all these dependencies and making

sure they are up to date can only be done through automations. These

automations should scan your code for dependencies and verify if they

are up to date. The automations should run on a periodic basis (e.g.,

once a week) and check for the availability of newer versions of your

dependencies. In the event it finds newer versions, it should either

auto-upgrade or notify the relevant stakeholders. Here are two popular

free and open-source tools that you can use for this purpose:

• Dependabot: From GitHub, this is a well known open-source

tool that helps keep your dependencies up to date. It automates

dependency management within your repositories and helps

developers identify outdated dependencies, suggest updates,

and even create pull requests to incorporate the latest versions.

This not only simplifies maintenance but also enhances the

security and functionality of your projects.

• Renovate: This is a similar open-source tool that also assists

in keeping dependencies up to date. However, it supports a

wider range of package managers and programming languages

compared to Dependabot.

Both tools can be integrated within CI/CD pipelines. This makes it

possible to integrate them in your build processes so that you don’t

have to attend to it manually. Apart from these two, there are many

other tools as well.

CORE PRACTICES FOR DEPENDENCY GOVERNANCE
Dependency management is not a one-time task. It requires regular

attention to ensure your dependencies are up to date. Below are some

useful steps for how to govern your dependencies:

• Establish clear guidelines and policies for selecting, approving,

and managing dependencies within your organization.

• Specify acceptable sources for dependencies (e.g., official

repositories, trusted vendors, etc.).

• Define a process for reviewing and approving new dependencies

before adding them to projects.

• Outline guidelines for updating dependencies, including

frequency, risk assessment, and potential breaking change

considerations.

• Regularly scan your dependencies for known vulnerabilities.

Utilize automated tools and incorporate security scanning into

your CI/CD pipeline.

• When updating dependencies, prioritize addressing security

vulnerabilities and mitigate potential risks before integrating

new versions.

• Stay updated on the security landscape and emerging

vulnerabilities to proactively address threats associated with

your dependencies.

• Monitor dependency usage by tracking how your dependencies

are used within your codebase and identify unused or rarely

used dependencies.

• Regularly evaluate the need for each dependency. Consider

if a particular dependency still aligns with your project's

requirements or if alternatives exist.

• Remove unused or outdated dependencies to minimize

potential security risks and streamline your project's codebase.

https://github.com/dependabot
https://github.com/renovatebot/renovate

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | OPEN SOURCE MIGR ATION PR ACTICES AND PATTERNS

 © DZONE | REFCARD | MARCH 2024 7

VERSIONING AND UPDATES
Encourage the adoption of semantic versioning for all dependencies.

This standardizes versioning practices, making it easier to understand

the nature of changes in each new version:

• Major version: Introduces breaking changes.

• Minor version: Introduces new features but doesn't break

existing functionality.

• Patch version: Fixes bugs or security vulnerabilities without

introducing new features.

By following semantic versioning, you can make informed decisions

about updating dependencies based on the nature of changes

introduced in new versions. Continuous testing is required to make sure

you don’t break anything when you update dependencies.

SECURITY VULNERABILITIES AND SCANNING
Security vulnerability scanning plays a critical role in safeguarding the

integrity and reliability of software used by organizations. It helps you

keep your systems safe through:

• Proactive identification: By proactively scanning open-source

components for vulnerabilities, organizations can identify

potential weaknesses before they are exploited by attackers.

• Early mitigation: Early detection allows for timely patching

or addressing vulnerabilities, minimizing the window of

opportunity for attackers and mitigating potential damage.

• Improved software quality: Regular vulnerability scanning

contributes to an overall improvement in the security posture of

software applications, fostering trust and reliability.

• Compliance and risk management: In regulated industries

or security-conscious organizations, vulnerability scanning

demonstrates proactive security measures and helps meet

compliance requirements.

SECURITY VULNERABILITIES AND REPORTS
With open-source software, all users have access to your code;

therefore, users are also able to identify vulnerabilities in your code and

dependencies. This should be seen as a blessing rather than a curse.

Being able to identify vulnerabilities before an attacker exploits them

is, indeed, a good thing.

The following can be used as guidelines to handle security vulnerabilities

and reports:

1. Establish clear and accessible channels for reporting

vulnerabilities in your open-source code or dependencies.

2. Maintain a well-defined security policy document outlining the

process for reporting vulnerabilities.

 − Define what constitutes a vulnerability and what

information should be included in a vulnerability report.

 − Specify preferred communication channels for reporting

vulnerabilities, such as the email address, issue reporting

system, etc.

 − Clearly document the public acknowledgement/

appreciation process.

3. Define a process for dealing with a reported vulnerability.

 − Accessing the vulnerability, categorizing based on severity,

acknowledgements, alerting customers, fixing the issue,

maintaining secrecy until the issue is fixed, etc.

4. Once an issue is fixed, deliver the software patch and notify

customers. Provide them a reasonable period to apply the fix.

5. Once the customers have applied the fix, notify and issue the fix

to the community as well.

6. Proceed with the public acknowledgement and reward for the

reporter.

RESPONDING TO VULNERABILITIES
When a vulnerability is reported in your software, it is important to

maintain a stringent response process. A high-level response process

is outlined below:

1. Initial acknowledgement and triage

• Acknowledge receipt promptly: Respond to the vulnerability

report within a short timeframe (ideally, within 24 hours)

to acknowledge its receipt and thank the reporter for their

responsible disclosure.

• Confidentiality: Maintain confidentiality unless a public

disclosure is necessary or agreed upon with the reporter.

• Maintain an internal database of reported vulnerabilities and

check against that to see if the same issue has been reported

before.

• Triage the vulnerability: Analyze the report to assess the

severity of the vulnerability, potential impact on users, and

feasibility of exploitation.

2. Communication and collaboration

• Communicate with the reporter: Keep the reporter informed of

the progress made in addressing the vulnerability.

• Seek clarification: If necessary, ask clarifying questions to

understand the vulnerability report better and ensure accurate

assessment.

3. Fix development and verification

• Develop a fix: Prioritize and dedicate resources to fixing the

vulnerability promptly, considering the severity and potential

impact.

• Internal testing: Thoroughly test the fix within your

development environment to ensure it effectively addresses the

vulnerability and doesn't introduce new issues.

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | OPEN SOURCE MIGR ATION PR ACTICES AND PATTERNS

 © DZONE | REFCARD | MARCH 2024 8

4. Public disclosure and updates

• Release a patch or update: Provide a patch or update that

addresses the vulnerability. Issue it to your customers first.

• Coordinate public disclosure: If a public disclosure is necessary,

collaborate with the reporter to determine an appropriate

timeframe and communication strategy.

MANAGING SOFTWARE LICENSES
When building open-source software, it is critical to understand

working with software licensing. Just because a software is open source

doesn’t mean you can use it at will. You need to check if the license

associated with the software permits you to use the software in the way

in which you intend to. The same applies to the open-source software

that you produce as well. The license you attach to your own software

will determine how others can use, modify, and redistribute it.

HOW TO CHOOSE A SUITABLE SOFTWARE FOR USE BASED
ON ITS LICENSE
Here are some common factors to check before you choose an open-

source software for your project.

1. Copyright and distribution:

 − Does the license allow you to freely distribute the software,

even if you modify it?

 − Are there any restrictions on how you can distribute it (e.g.,

requiring that source code be included)?

2. Modification:

 − Can you modify the original code to fit your project's needs?

 − Are there any limitations on how you can modify it (i.e.,

preserving certain functionalities)?

3. Commercial use:

 − Can you use the software in a commercial product or

service?

 − Some licenses might restrict commercial use or require

additional steps (i.e., disclosing modifications).

4. Attribution:

 − Does the license require you to credit the original authors in

your project?

 − How should attribution be provided (i.e., copyright notice)?

5. Warranty and liability:

 − Open-source software typically comes with no warranty.

 − Does the license clarify who is liable for any issues arising

from the software?

The Open Source Initiative (OSI) License Reference provides explan-

ations of various licenses. Here are some common open-source licenses:

1. Apache License 2.0 – A popular permissive license that strikes

a good balance between openness and protecting the original

code, the Apache License 2.0 requires keeping copyright notices,

providing a copy of the license with the distributed code,

and following certain patent terms, but allows for free use,

modification, and distribution, even for commercial purposes.

2. MIT License – Another very permissive license, the MIT License

allows you to keep the copyright and license notice intact, but

otherwise, it allows for free use, modification, and distribution

of the code, even for commercial purposes.

3. BSD Licenses – BSD is a family of permissive licenses, with

the most popular ones being 2-Clause BSD and 3-Clause BSD.

Similar to the MIT License, this requires keeping copyright

notices and disclaimers, but otherwise, it allows for free use,

modification, and distribution.

In case of any doubt on the suitability of a software license, it is

always recommended to consult a lawyer. Apart from the suitability

of the software and its license, you also need to do a general health

check on it to make sure the community around it is active. There are

many open-source projects and versions of projects that have been

abandoned by the community. Make sure that the software you select

for your project has active community involvement. In case a critical

bug or security vulnerability is reported within that software, an active

community will increase the chances of finding a resolution faster

rather than on your own.

PREVENTING ACCIDENTAL MISUSE OF A SOFTWARE
LICENSE
In a project with many contributors, it is quite possible that someone

unknowingly uses a software dependency that does not bear a license

friendly for your purpose. As a general rule of thumb, it is important

to establish a process where you mandate an approval process and a

security scan report for any software dependency in your organization.

It is also a best practice to establish a rule saying that you can only use

software bearing a particular license. (e.g., Apache 2.0 and MIT only).

However, as they say: “trust but verify.” Make sure you have an

automated process that scans through your software dependencies and

performs relevant checks. This can be integrated with your software CI

pipelines so that these scans never get missed. Maintaining an internal

database of all software dependencies and their licenses will help in this

cause. When a new dependency is introduced, the checks will fail due

to it not being available in the database yet — at which point, the new

dependency can be added to the database after review and approval.

https://opensource.org/licenses
https://www.apache.org/licenses/LICENSE-2.0
https://opensource.org/license/mit
https://opensource.org/license/bsd-2-clause
https://opensource.org/license/bsd-3-clause

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | OPEN SOURCE MIGR ATION PR ACTICES AND PATTERNS

 © DZONE | REFCARD | MARCH 2024 9

3343 Perimeter Hill Dr, Suite 100
Nashville, TN 37211

888.678.0399 | 919.678.0300

At DZone, we foster a collaborative environment that empowers developers and
tech professionals to share knowledge, build skills, and solve problems through
content, code, and community. We thoughtfully — and with intention — challenge
the status quo and value diverse perspectives so that, as one, we can inspire
positive change through technology.

Copyright © 2024 DZone. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by means
of electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

WRITTEN BY NUWAN DIAS,
DEPUTY CTO, WSO2

Nuwan is a Product Manager at WSO2. He comes
from a technical background, contributing to
software products in various business domains. He’s
an author, speaker and technical specialist on APIs,
integration, and security.

CONCLUSION
In conclusion, open-source software presents a compelling alternative

to traditional proprietary solutions. It offers cost-effectiveness,

flexibility, security, and a collaborative environment that fosters

innovation. However, it's crucial to approach open source with

awareness and implement best practices to mitigate potential risks. By

carefully evaluating dependencies, maintaining security hygiene, and

contributing responsibly to the open-source ecosystem, individuals

and organizations can harness the full potential of open-source

software while safeguarding their digital assets and fostering a more

secure and collaborative technological landscape.

