
BROUGHT TO YOU IN PARTNERSHIP WITH

1

398

 © DZONE | REFCARD | SEPTEMBER 2024

Open-Source Data
Management Practices
and Patterns
ABHISHEK GUPTA
PRINCIPAL DEVELOPER ADVOCATE, AWS

CONTENTS

• 	 Open-Source Data Technologies

− 	 Popular Open-Source Data Tools

• 	 Open-Source Data Management:
Patterns and Core Practices

− 	 Scalability and High Availability

− 	 Capacity Planning

− 	 Disaster Recovery

− 	 Security

− 	 Monitoring

− 	 Tuning and Optimization

• 	 Conclusion

Open-source technologies form the backbone of scalable, secure, and

cost-effective data solutions. The landscape offers a diverse array

of options, from distributed databases to messaging systems and

analytics engines. Modern data architectures often leverage multiple

technologies to harness their unique strengths and features.

This Refcard explores key open-source data technologies and

presents core practices for building data architectures, including

infrastructure requirements, high availability strategies, optimization

techniques, and more. While the core practices are broadly applicable,

the examples in this Refcard focus on PostgreSQL®, Apache Cassandra®,

and Apache Kafka®, providing in-depth insights into each.

OPEN-SOURCE DATA TECHNOLOGIES
Implementing open-source data architectures offers organizations

significant advantages, including cost effectiveness through

eliminated licensing fees, flexibility for customization, and reduced

vendor lock-in. These solutions benefit from diverse community

support, driving rapid innovation, frequent updates, and regular

security patches.

Open-source solutions also facilitate integration with other systems,

promote knowledge sharing within the developer community, and

allow organizations to contribute back to the ecosystem, potentially

influencing future development directions. Key categories in

the open-source data ecosystem include relational and NoSQL

databases, distributed messaging systems, big data processing

frameworks, and data orchestration and workflow management tools.

Relational databases excel at managing structured data with

predefined schemas and enforcing data integrity constraints. They're

ideal for applications requiring strong consistency and sophisticated

data relationships. Popular options include PostgreSQL and MySQL.

NoSQL databases are non-relational systems designed to handle

specific data models, including key-value, document, column-family,

and graph formats. They prioritize scalability and flexibility over

strict consistency, often offering schemaless designs and distributed

architectures. For example, Apache Cassandra, a column-family store,

excels in write-heavy workloads and provides linear scalability across

multiple nodes.

Distributed messaging systems enable real-time data streaming

and event-driven architectures. They decouple data producers from

consumers, providing scalable, fault-tolerant message distribution

across distributed systems. Apache Kafka, for example, offers

high-throughput, persistent storage of data streams, making it

well suited for building large-scale data pipelines and real-time

analytics applications.

https://www.instaclustr.com/resources/solving-open-source-complexity/?utm_campaign=clps-icmt-insta-na-ww-webc-pdf-1723573760724&utm_source=dzone&utm_medium=display&utm_content=document
https://www.postgresql.org/docs/
https://cassandra.apache.org/doc/latest/
https://kafka.apache.org/documentation/
https://dev.mysql.com/doc/

https://www.instaclustr.com/?utm_campaign=clps-icmt-insta-na-ww-webc-pdf-1723573800335&utm_source=dzone&utm_medium=display&utm_content=document

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | OPEN-SOURCE DATA MANAGEMENT PR ACTICES AND PATTERNS

 © DZONE | REFCARD | SEPTEMBER 2024 3

Big data processing frameworks are designed to handle and analyze

massive datasets across distributed computing environments. They

offer scalable, parallel processing capabilities that traditional data

tools can't match. Apache Spark®, for instance, provides a unified

engine for large-scale data analytics, supporting batch processing,

stream processing, machine learning, and graph computation on the

same distributed dataset.

Data orchestration and workflow management tools help automate

and manage complex data pipelines across various systems. They

coordinate tasks, handle dependencies, and ensure smooth data flow

between different components of a data ecosystem. Apache Airflow®,

for example, allows users to programmatically author, schedule,

and monitor workflows, making it easier to manage ETL (extract-

transform-load) processes and data-intensive applications.

POPULAR OPEN-SOURCE DATA TOOLS
Before exploring the core practices for building data architectures,

here is a high-level overview of PostgreSQL, Apache Kafka, and

Apache Cassandra.

PostgreSQL is a relational database that is known for its reliability,

extensibility, and standards compliance.

• 	 It supports a wide range of features, including complex

queries, foreign keys, triggers, updatable views, and

transactional integrity.

• 	 Its architecture allows for high concurrency through the

implementation of multi-version concurrency control (MVCC),

which enables readers and writers to operate simultaneously

without locking.

With its strong emphasis on data integrity and ability to handle

large volumes of data efficiently, PostgreSQL is a popular choice

for enterprise applications, geospatial systems, and complex data

analytics workloads.

Apache Cassandra is a scalable, high-performance distributed NoSQL

database designed to handle large amounts of data.

• 	 It provides high availability with no single point of failure,

offering support for clusters spanning multiple data centers.

• 	 Its architecture is based on a ring design and uses consistent

hashing for data distribution, allowing for linear scalability and

fault tolerance.

• 	 It offers tunable consistency levels and data replication.

Cassandra's data model is based on wide column stores, making it

particularly suitable for handling time series data, sensor data, and

other scenarios requiring fast writes and reads across large datasets.

Apache Kafka is a distributed event streaming platform designed for

high-throughput, fault-tolerant, and scalable data pipelines.

• 	 It utilizes a publish-subscribe model, where data is organized

into topics that can be partitioned across multiple servers for

parallel processing.

• 	 Its architecture includes producers that write data to topics,

consumers that read from topics, and brokers that store and

serve the data.

• 	 It maintains an ordered, immutable log of events, allowing for

replay and reprocessing of data streams.

• 	 Key features include low-latency message delivery, data

persistence, stream processing, and strong guarantees for

message ordering and delivery.

With its ability to handle millions of messages per second, Kafka is

widely used for building real-time data streaming applications, log

aggregation, and metrics collection — and is used as a backbone for

microservices architectures.

OPEN-SOURCE DATA MANAGEMENT:
PATTERNS AND CORE PRACTICES
Let's dive into some of the key patterns and practices for deploying and

managing open-source data solutions.

SCALABILITY AND HIGH AVAILABILITY
Scalability and high availability (HA) are crucial aspects of modern data

architectures. As systems grow and demand increases, the ability to

scale efficiently and maintain uninterrupted service becomes crucial.

PostgreSQL offers both vertical and horizontal scaling options to

enhance performance and availability. Vertical scaling involves

upgrading hardware resources, while horizontal scaling can be

achieved through read replicas, partitioning, and sharding. High

availability is supported through built-in streaming replication, which

maintains standby servers for failover and logical replication for more

granular control over replication of specific tables or databases.

CORE PRACTICE

Load balancing to improve performance and availability

Load balancing tools like HAProxy can be used to distribute queries

across multiple PostgreSQL instances.

An HA PostgreSQL setup typically involves:

• 	 A primary server for writes

• 	 Multiple read replicas for scaling read operations

• 	 Streaming replication for near real-time data synchronization

• 	 A failover mechanism (e.g., Patroni) to promote a standby to

primary in case of failure

• 	 Connection pooling and load balancing to efficiently manage

client connections

This configuration provides both read scalability and HA: The primary

handles writes, while read replicas serve read queries and provide

failover capability.

https://spark.apache.org/documentation.html
https://airflow.apache.org/docs/apache-airflow/stable/index.html
https://www.postgresql.org/docs/7.1/mvcc.html
https://www.haproxy.org/
https://patroni.readthedocs.io/

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | OPEN-SOURCE DATA MANAGEMENT PR ACTICES AND PATTERNS

 © DZONE | REFCARD | SEPTEMBER 2024 4

Figure 1: PostgreSQL HA architecture

Kafka's horizontal scalability is primarily achieved through topic

partitioning, allowing for distributed data processing across multiple

brokers in a cluster. This architecture enables Kafka to handle high

data volumes and throughput, with the ability to add brokers as

needed. High availability is ensured through replication, with each

partition typically having multiple replicas across different brokers.

CORE PRACTICES

• 	 Ensure redundancy and fault tolerance by using a replication factor
of three for production environments

• 	 Enhance resilience and protect against zone-level failures by deploying
Kafka clusters across multiple availability zones or data centers

A typical production Kafka deployment might involve a cluster of

three to five brokers spread across three availability zones, with a

replication factor of three (or more) for critical topics. This setup

allows for both scalability by adding more brokers or partitions and

HA through replication and distribution across zones.

Figure 2: Kafka HA architecture

Cassandra achieves scalability and HA through its distributed

architecture. It utilizes consistent hashing to distribute data across

nodes, with virtual nodes (vnodes) improving load balancing. Scalability

is linear: Doubling node count typically doubles throughput and storage.

CORE PRACTICES

• 	 Maintain geographic redundancy with multi-data-center replication

• 	 Allow trade-offs between read/write performance using appropriate
consistency levels

A typical Cassandra deployment contains multiple data centers, each

containing at least three nodes to ensure quorum-based operations.

With proper configuration, this setup provides excellent scalability

as nodes can be added to any data center to increase capacity. It also

ensures HA, as the loss of a single node — or even an entire data center

— doesn't impact overall operations.

Figure 3: Cassandra HA architecture

CAPACITY PLANNING
Effective capacity planning is crucial for ensuring optimal performance,

scalability, and cost efficiency of open-source data technologies. It

involves estimating hardware requirements and resource allocation to

support current and future workloads.

Below are practices related to CPU, memory, network, and storage to

keep in mind when working with PostgreSQL, Kafka, and Cassandra:

POSTGRESQL CORE PRACTICES

CPU PostgreSQL benefits from both single-thread performance
and multiple cores:

• 	 For OLTP workloads, prioritize high clock speeds

• 	 For analytics or parallel query workloads, consider
balancing clock speed with core count

Memory • 	 Allocate at least 8GB for production environments

• 	 Set shared_buffers to 25% of total system memory

• 	 Increase based on workload complexity, data size, and
concurrent connections

Network • 	 Use high-bandwidth connections for write-intensive
workloads or synchronous replication

• 	 In high-traffic environments, consider dedicated
network interfaces for client and replication traffic

Storage • 	 Use SSDs for better I/O performance

• 	 Plan for 2.5-3x the raw data size to accommodate
indexes, temporary files, WAL, and vacuum operations

• 	 Monitor usage and adjust based on workload patterns

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | OPEN-SOURCE DATA MANAGEMENT PR ACTICES AND PATTERNS

 © DZONE | REFCARD | SEPTEMBER 2024 5

APACHE KAFKA CORE PRACTICES

CPU CPU needs vary with workload:

• 	 Start with 4 cores per broker for small deployments

• 	 For large-scale production environments, consider 8-16
cores per broker

• 	 Increase for compression, encryption, or stream
processing tasks

• 	 Monitor CPU utilization and scale as needed

Memory • 	 Start with 8GB heap space per broker

• 	 Allocate additional RAM for the page cache, typically
1-2x the heap size

• 	 For large deployments, consider up to 32GB heap

• 	 Monitor and adjust based on throughput requirements
and broker performance

Network • 	 Use low-latency, high-bandwidth network connections

• 	 Dedicate network interfaces for inter-broker and
client traffic

• 	 For multi-data-center setups, ensure robust WAN links

• 	 Monitor network throughput and latency regularly

Storage • 	 Use local SSDs or high-performance HDDs for the best
price/performance ratio

• 	 Account for replication factor and potential traffic spikes

• 	 Monitor disk usage and adjust as needed

APACHE CASSANDRA CORE PRACTICES

CPU • 	 Use multi-core processors

• 	 Start with 8 cores per node for moderate workloads,
scaling to 16+ cores for write-heavy or analytics-
intensive operations

Memory • 	 Allocate 16-32GB of RAM per node (memory is also
utilized for caching, improving read performance)

Network • 	 Ensure high-bandwidth, low-latency connections between
nodes, especially in multi-data-center deployments

Storage • 	 Use SSDs for optimal performance

• 	 Plan for 2-4x the raw data size to account for compaction,
repair processes, and snapshots

• 	 Factor in replication strategy when calculating total
cluster storage

Your requirements may vary based on workload characteristics,

data models, and application needs. As your system evolves, be

prepared to reassess and adjust your resource allocation. Open-

source tools like Prometheus for monitoring and Grafana for

visualization can provide valuable insights into resource utilization

and help inform your capacity planning decisions.

DISASTER RECOVERY
While replication is crucial for HA, you should use additional

PostgreSQL features for disaster recovery. Conduct routine tests

for disaster recovery procedures, including restoration from both

logical and physical backups and point-in-time recovery (PITR), in a

separate environment to verify data integrity and familiarize the team

with recovery processes.

CORE PRACTICES

• 	 Enable continuous WAL archiving and use tools like pg_basebackup,
pg_waldump, and pg_receivewal to create full backups and
restore to any specific moment, protecting against logical errors
and data corruption

• 	 Implement both logical (pg_dump) and physical (pg_basebackup)
backups with a rotation strategy

• 	 Store backups off site or in cloud storage to safeguard against
site-wide disasters

In Kafka-based architectures, Kafka MirrorMaker 2.0 (MM2) is

used for disaster recovery solutions. It utilizes the Kafka Connect

framework to perform efficient cross-cluster replication, essential

for maintaining business continuity. MM2 architecture incorporates

MirrorSourceConnector for data and metadata replication and

MirrorCheckpointConnector for synchronizing consumer group

offsets. This design enables the preservation of topic structures,

partitions, and consumer offsets across clusters, facilitating rapid

failover during disaster scenarios.

For effective disaster recovery, MM2 can replicate data to

geographically distant locations, supporting both active-passive and

active-active configurations to meet specific recovery time and point

objectives. MM2 minimizes data loss and downtime in the event of

cluster failures or regional outages. This ensures that in the event of

a disaster, you can quickly redirect traffic to the secondary site with

minimal data loss and configuration drift.

To set up MirrorMaker 2.0 for disaster recovery:

• 	 Define the source cluster by configuring connection details for

the primary Kafka cluster

• 	 Define details for the target (backup/secondary) Kafka cluster

• 	 Establish replication flows by specifying which topics should

be replicated (use regular expressions to include or exclude

specific topics)

• 	 Configure the replication factor for mirrored topics in the

target cluster

• 	 Enable offset syncing to maintain consistency between source

and target clusters

Here is an example of MM2 configuration:

clusters:
 primary:
 bootstrap.servers: primary-kafka:9092
 dr:
 bootstrap.servers: dr-kafka:9092

mirrors:
 primary->dr:
 source: primary
 target: dr
 topics: ".*"
 topics.exclude: "internal.*"
 replication.factor: 3
 sync.topic.acls.enabled: true

https://github.com/prometheus/prometheus
https://github.com/grafana/grafana

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | OPEN-SOURCE DATA MANAGEMENT PR ACTICES AND PATTERNS

 © DZONE | REFCARD | SEPTEMBER 2024 6

The configuration above specifies two clusters: primary and dr

(disaster recovery), each with their respective bootstrap servers. The

mirrors section establishes a replication flow from the primary to

the dr cluster. It's configured to replicate all topics (.*) except those

starting with internal (internal.*). The replication factor is set to 3

for mirrored topics in the target cluster, ensuring data redundancy.

Additionally, the configuration enables access control list (ACL)

synchronization between clusters, maintaining consistent access

controls across the primary and disaster recovery environments.

Cassandra's distributed architecture provides built-in redundancy,

but it's important to consider disaster recovery measures, including

those below:

CORE PRACTICES

Snapshots Use Cassandra's snapshot feature to create point-in-time
backups of your data and execute the nodetool snap-
shot command to create consistent snapshots across all
nodes. These snapshots can be used for full or partial
data restoration.

Incremental
backups

Enable incremental backups by setting incremen-
tal_backups: true in cassandra.yaml. This creates
hard links to new SSTables, allowing for more granular
recovery options and reducing the storage overhead of
full snapshots.

Commit log
archiving

Configure commit log archiving by setting commit-
log_archiving_enabled: true in cassandra.yaml.
This allows you to capture all writes between snapshots,
enabling PITR.

SECURITY
Authentication mechanisms ensure that only authorized users or

applications can access your data systems, whereas perimeter security

focuses on encrypting data in transit.

CORE PRACTICES

• 	 Enforce security via common authentication measures (e.g.,
username/password combinations, RBAC) and consider advanced
authentication methods like Kerberos

• 	 Encrypt data in transit with SSL/TLS to prevent intrusions like
eavesdropping and man-in-the-middle attacks

Authentication in PostgreSQL is managed through the pg_hba.conf

file, supporting methods like password-, LDAP-, and certificate-based

authentication. RBAC enables granular permission management. For

encrypted connections, PostgreSQL supports SSL/TLS, which can

be enabled by configuring the ssl parameter in postgresql.conf,

specifying certificate and key paths, and setting ssl=on. Clients can

then establish secure connections by using the sslmode=require

parameter in their connection string.

For authentication, Kafka supports Simple Authentication and

Security Layer (SASL) with mechanisms including PLAIN, SCRAM, and

Kerberos. ACLs provide fine-grained authorization control over

topics and consumer groups. To enable SSL/TLS in Kafka, you need

to create a keystore with your broker's private key and certificate and

a trust store with the Certificate Authority's certificate. Configure

these in the server.properties file of each broker. Clients will need

to be configured with the trust store to establish secure connections.

Example Kafka SSL configuration:

listeners=SSL://hostname:9093
ssl.keystore.location=/path/to/kafka.server.
keystore.jks
ssl.keystore.password=keystore-password
ssl.key.password=key-password
ssl.truststore.location=/path/to/kafka.server.
truststore.jks
ssl.truststore.password=truststore-password
ssl.client.auth=required

Cassandra provides several options for authentication and

authorization. The default authenticator is AllowAllAuthenticator,

which does not perform any authentication. For production

environments, it's recommended to use PasswordAuthenticator

or a custom authenticator. Cassandra's RBAC allows you to define

granular permissions for users and roles. For SSL/TLS, Cassandra

uses Java keystore files to store certificates. You'll need to generate

a keystore for each node and a trust store for clients. Configure these

in the cassandra.yaml file. When enabled, clients must connect

using SSL to communicate with the cluster.

MONITORING
Key monitoring stats for PostgreSQL include query performance,

connection counts, replication lag, and database size growth.

CORE PRACTICES

• 	 Utilize pg_stat_* views for comprehensive database activity insights,
including long-running queries (pg_stat_activity) and index usage
(pg_stat_user_indexes)

• 	 Track vacuum operations, especially autovacuum activity and table
bloat, to prevent performance issues

• 	 Monitor checkpoint frequency and duration to avoid I/O spikes

• 	 For connection management, track active and idle connections, and if
using connection pooling tools like PgBouncer, monitor their specific
metrics to ensure optimal performance

Kafka's JMX metrics provide detailed insights into cluster

performance, including detailed statistics on brokers, topics, and

client operations. Key JMX metrics include broker-level statistics

such as request rates and network processor utilization, topic-level

metrics like bytes in/out per second, and consumer group metrics

such as lag and offset commit rates. Tools like Prometheus with

Grafana can effectively collect, visualize, and alert on these metrics,

providing a holistic view of Kafka cluster health and performance.

CORE PRACTICES

• 	 Track consumer lag to identify processing bottlenecks

• 	 Monitor active controllers and controller changes for cluster stability

• 	 For producers, observe batch sizes and compression ratios

• 	 For consumers, monitor fetch request rates and sizes

https://web.mit.edu/kerberos/
https://en.wikipedia.org/wiki/Simple_Authentication_and_Security_Layer
https://www.pgbouncer.org/

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | OPEN-SOURCE DATA MANAGEMENT PR ACTICES AND PATTERNS

 © DZONE | REFCARD | SEPTEMBER 2024 7

Cassandra monitoring should encompass node health, cluster

communication, and query performance, focusing on key metrics

such as read/write latencies, compaction rates, and heap usage.

Essential areas to track include gossip communication for cluster

stability, pending compactions and SSTable counts per keyspace,

read repair rates, and hinted handoffs for data consistency.

CORE PRACTICES

• 	 Monitor tombstones and garbage collection pauses closely to prevent
performance degradation and node instability

• 	 Utilize Cassandra's nodetool utility, particularly the tablestats
command, for detailed insights into cluster health and table
performance

TUNING AND OPTIMIZATION
PostgreSQL, Kafka, and Cassandra each offer unique configuration

options for performance tuning and optimization, core practices for

which are noted in the table below.

CORE PRACTICES

PostgreSQL • 	 Adjust shared_buffers and work_mem for
memory management

• 	 Use EXPLAIN ANALYZE and create appropriate indexes
for query optimization

• 	 Configure autovacuum settings with the vacuum and
analyze operations

Kafka • 	 Tune producer to optimize batch size and
enable compression

• 	 Adjust broker configuration, including network and I/O
threads and partition count

Cassandra • 	 Select appropriate compaction strategies based on
workload characteristics

• 	 Tune memory to balance heap and off-heap memory usage
• 	 Optimize read and write paths through cache

configurations and commit log settings

CONCLUSION
This Refcard explored key open-source data technologies — PostgreSQL,

Apache Cassandra, and Apache Kafka — providing insights into their

architectures and core management practices. We examined essential

patterns for building scalable and resilient data infrastructures,

including high availability strategies, capacity planning, disaster

recovery, security measures, monitoring approaches, and performance

optimization techniques.

By leveraging these open-source solutions and following core

practices, organizations can create powerful, flexible, and cost-

effective data architectures to support modern application needs.

3343 Perimeter Hill Dr, Suite 100
Nashville, TN 37211

888.678.0399 | 919.678.0300

At DZone, we foster a collaborative environment that empowers developers and
tech professionals to share knowledge, build skills, and solve problems through
content, code, and community. We thoughtfully — and with intention — challenge
the status quo and value diverse perspectives so that, as one, we can inspire
positive change through technology.

Copyright © 2024 DZone. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by means
of electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

WRITTEN BY ABHISHEK GUPTA,
PRINCIPAL DEVELOPER ADVOCATE, AWS

Over the course of his career, Abhishek has worn
multiple hats including engineering, product
management, and developer advocacy. Most of his
work has revolved around open-source technologies,
including distributed data systems and cloud-native platforms.
Abhishek is also an open source contributor and avid blogger.

