
 Bootstrap From Backups
Reducing cluster load while adding capacity

#CassandraSummit

instaclustr.com

http://instaclustr.com

Who am I and what do I do?
• Ben Bromhead

• Co-founder and CTO of Instaclustr -> www.instaclustr.com

• Instaclustr provides Cassandra-as-a-Service in the cloud.

• Currently in AWS, Google Cloud in private beta with more to come.

• We currently manage 50+ nodes for various customers, who do
various things with it.

http://www.instaclustr.com

Cassandra and Scaling
• Premise: We have an existing cluster and we need either more storage / better

performance / higher availability.

• Normally fairly awesome, most people do the following:

• Set seed nodes, Start Cassandra.

• Node joins ring and take responsibility for some portion of the ring.

• Commence the bootstrap process. The joining node streams data from other
nodes for the range, builds indexes etc.

• Specifically the node receives streamed SSTables that contain rows within the
range that it is now responsible for (the data component)

Not perfect, but getting better
• Joining node can violate consistency due to range movements -

Somewhat fixed in 2.1 - See CASSANDRA-2434

• Adding a replacement node with the same address/range
ownership is a different workflow. replace_address workflow is still
tricky for some people. - See CASSANDRA-7356

• Adding nodes to a cluster with multiple racks can also be tricky and
prone to creating hotspots. This is mainly an operational issue.

A wild “fundamental issue” appears…

• Joining nodes add additional load on the existing nodes in the cluster.

• Joining nodes stream data from existing nodes (the node who used to be the primary for the
range that is moving).

• Takes up valuable bandwidth and I/O

• Key requirement: As a managed Cassandra service, we need to make all our operations as
side-effect free as possible.

• Key requirement: Our customers don’t want to worry about operation specific details.

how do we prevent this?

Solutions, part 1

Make sure your nodes never get
stressed.

• Capacity planning (OpsCenter
has some good tools). Traffic
prediction.

Solutions, part 2

Make sure your nodes never get
stressed

• Over provision.

Solutions, part 3

Make sure your nodes never get
stressed.

• Ensure your startup / app /
project / whatever never goes
viral or gets featured in national
media.

Solutions, part 4

If your nodes are already
stressed, very hard to add
capacity.

• Batten down the hatches and
wait for a quiet time?

Solutions, part 5

If your nodes are already
stressed, very hard to add
capacity.

• You are a Cassandra wizard.

Solutions, part 6

If your nodes are already
stressed, very hard to add
capacity.

• Rebuild from another DC.

• Add node, bootstrap = false
and run nodetool rebuild --
OTHER_DC

• All these solutions have various strengths and weaknesses.

• Have side-effects or a relatively costly.

• Still need to address:

• Key requirement: As a managed Cassandra service, we need to make all our operations as
side-effect free as possible.

• Key requirement: Our customers don’t want to worry about operation specific details.

Bootstrap from Backups!

• SSTables are immutable.

• SSTables are also the base unit of data that nodes stream to each
other.

• SSTables are what we backup.

• How about we stream the SStables from the backup location
instead of the live node?

• Define an arbitrary command that streams the sstable to stdout.

• Cassandra will some values (broadcast address and filename) into
the command to help identify which sstable to fetch.

• e.g. cat /mnt/some-nfs-mount/%source/%filename

• Cassandra will run the command in a separate process and read the
sstable from processes stdout stream.

• If the process fails, the node streams the sstable using the current
streaming process. This becomes a performance optimisation rather
than a replacement streaming mechanism.

1 3

2

new node

SSTable1

Normal Bootstrap procedure

1 3

2

new node

SSTable1

Normal Bootstrap procedure

1 3

2

NAS/S3

SSTable1

SSTable1 SSTable2 SSTableN

Normal Cluster with backups

1 3

2

new node

SSTable1

NAS/S3

SSTable1 SSTable2 SSTableN

Bootstrap from backup

1 3

2

new node

SSTable1

NAS/S3

SSTable1 SSTable2 SSTableN

Bootstrap from backup

1 3

2

new node

SSTable1

NAS/S3

SSTable1 SSTable2 SSTableN

Bootstrap from backup - Catch up

How does it look in real life?

This is your cluster on regular bootstrap

O
pe

ra
tio

ns

0

7500

15000

22500

30000

Minutes
0 5 10 15 20 25 30 35 40 45 50 55 60

This is your cluster on bootstrap from backups

O
pe

ra
tio

ns

0

7500

15000

22500

30000

Minutes
0 5 10 15 20 25 30 35 40 45 50 55 60

Why does this matter

• Mostly side-effect free bootstrapping.

• Explore reactive scaling rather than predictive.

• Makes your cluster more cost effective to run.

When can I use this!?
• Not right now, haven’t even submitted as a patch to the C* project

(we will).

• Currently running in beta with a select few of our customers.

• Not too sure how much of a good idea it is to use stdout as the
stream mechanism. So far so good?

• Will probably need a refactor of the StreamMessage workflow…
currently bootstrap from backups is a has that doesn't fit the current
model.

Questions

