
Apache	Cassandra
From	POC	to	PROD:	Twelve	sprints	of	Cassandra

Christophe	Schmitz
Director	of	Consulting,	Europe
christophe@instaclustr.com

Agenda

• Sprint	1	Data	modeling
• Sprint	2	Cluster	sizing
• Sprint	3	Stress	test
• Sprint	4	Data	modeling	(revisit)
• Sprint	5	Analytics
• Sprint	6	Security
• Sprint	7	Go	Live
• Sprint	8	Monitoring
• Sprint	9	Hello	Compaction	and	Repair
• Sprint	10	Large	partition	and	tombstone
• Sprint	11	Cluster	expansion

1

Sprint	0:	Choosing	Cassandra

2

Why	people	choose	Cassandra?

High	availability

Linear	scalability

Low	latency

3

When	is	Cassandra	a	good	choice?

Schema	relatively	stable

Access	pattern	predictable

Update	/	delete	infrequent

IOT	/	Timeseries /	Transactions	are	good	example
4

Sprint	1:	Data	Modeling

5

Quick introduction to Cassandra

6

Sensor Id, Date, Timestamp, metrics1, ..

Partitioning

7

Design Approach
• Phase 1: Understand the data

• Define the data domain: E-R logical model
• Define the required access patterns: how will you select an update data?

• Phase 2: Denormalize based on access patterns
• Identify primary access entities: driven by the access keys
• Allocate secondary entities: denormalize by pushing up or down to the primary entities

• Phase 3: Review & tune
• Review partition keys and clusters

• Do partition keys have sufficient cardinality?
• Is the number of records in each partition bounded?
• Does the design consider delete and update impact?

• Test & tune: check updates, review compaction strategy

8

Sprint	2:	Cluster	Sizing

9

Cluster sizing: consideration
• Disk usage (RF / MV)
• Read / Write throughput driven
• Availability / Consistency desired

10

Sprint	3:	Stress	test

11

• Long running tests with background load are vital
• Can run extremely high write loads for an hour or two but might take days to catch up on

compactions
• Don’t forget repairs

• Make sure your data volumes on disk are representative as well as read/write
ops - cache hit rates can make a big difference to performance

• Mirror production data demographics as closely as possible (eg partition size)
• Don’t forget to include update/delete workload if applicable
• For core cassandra features, can test on reduce size and rely on scale-up but

beware:
• Secondary indexes
• MVs
• LWTs

12

Testing Cassandra applications

Testing in practice
• Cassandra-test for synthetic testing

• https://www.instaclustr.com/deep-diving-into-cassandra-stress-part-1

• JMeter for application level testing.
• JMeter / Cassandra plugin

13

Sprint	4:	Data	modeling	- revisit

14

I	want	to	query	by	a,	or	b,	or	c
->	Materialized	view

I	want	to	query	by	a,	b,	c,	d,	e,	f,	a+c,	d+e …..
->	Stratio Lucene
->	DSE	search	(Solr)
->	Elassandra (Cassandra	+	Elasticsearch)

15

CREATE TABLE my_ks.my_tb (a int PRIMARY KEY, b int, c int, d int);

CREATE MATERIALIZED VIEW my_ks.my_tb_by_b AS
SELECT a, b, c, d
FROM my_ks.my_tb
WHERE a IS NOT NULL AND b IS NOT NULL
PRIMARY KEY (b, a);

Sprint	5:	Analytics	(and	data	migration)

16

Cassandra	=>	fast	=>	no	join.
Spark	on	Cassandra

17

https://www.instaclustr.com/multi-data-center-apache-spark-and-
apache-cassandra-benchmark/

18

output.throughput_mb_per_sec
input.fetch.size_in_rows
input.reads_per_sec

Sprint	6:	Security

19

Security
• At a minimum

• Enable password auth
• Enable client->server encryption (particularly if using public IPs to connect)
• Enable internode encryption
• Don’t use the default Cassandra user
• Set up some read only user

• Best practice
• Encrypt sensitive data at the client

• Works well with typical C* access patterns where PK values are hashed anyway
• Dates are the most common case of range selects and typically are not sensitive

if other identifying data is encrypted

20

Sprint	7:	Go	Live!

21

22

Everything works!

Sprint	8:	Monitoring	and	Alerting

23

24

JMX_exporter +
prometheus +
Grafana

datadog

Instaclustr console

Monitoring Cassandra (Metrics + Alerting)

Items marked ** give an overall indication of cluster performance and availability 25

Metric Description Frequency

**Node Status Nodes DOWN should be investigated immediately.
org.apache.cassandra.net:type=FailureDetector

Continuous,
with alerting

**Client read latency Latency per read query over your threshold
 org.apache.cassandra.metrics:type=ClientRequest,scope=Read

Continuous,
with alerting

**Client write latency Latency per write query over your threshold
 org.apache.cassandra.metrics:type=ClientRequest,scope=Write

Continuous,
with alerting

CF read latency Local CF read latency per read, useful if some CF are particularly
latency sensitive.

Continuous if required

Tombstones per read A large number of tombstones per read indicates possible performance
problems, and compactions not keeping up or may require tuning

Weekly checks

SSTables per read High number (>5) indicates data is spread across too many SSTables Weekly checks

**Pending
compactions

Sustained pending compactions (>20) indicates compactions are not
keeping up. This will have a performance impact.
org.apache.cassandra.metrics:type=Compaction,name=PendingTasks

Continuous,
with alerting

Sprint	9:	Compaction	and	Repair

26

Compaction Intro

27

• Cassandra never updates sstable files
once written to disk

• Instead all inserts and updates are
essentially (logically) written as
transaction logs that are reconstituted
when read

• Compaction is the process of
consolidating transaction logs to simplify
reads

• It’s an ongoing background process in
Cassandra

• Compaction ≠ Compression

Repair Intro

28

• Reads every SSTable to be repaired

• Generates a merkle tree of data read.

• Send merkle tree to replicas, each replica
compares each tree against every other.

• Any differences, Cassandra will stream
the missing data

• Streamed data will be written as a new
SSTable generating more compaction

256

HASH:97466B...

128

HASH:JHQ3JC...

512

HASH:3278SD...

64

HASH:235SDH...

196

HASH:PIWE53...

320

HASH:5378D... HASH:GH4255...

Compaction and Repair
• Regular compactions are an integral part of any healthy Cassandra

cluster.
• Repairs need to be run to ensure data consistency every gc_grace

period.
• Can have a significant disk, memory (GC), cpu, IO overhead.
• Are often the cause of “unexplained” latency or IO issues in the

cluster.
• Repair has a number of different strategies (sequential, parallel,

incremental, sub range).
• Choose one that works best for you (likely to be either sub range or

incremental).

29

Monitoring Compactions/Repair

• Monitor	with	nodetool compactionstats,		tpstats &	
netstats

~ $ nodetool compactionstats -H
pending tasks: 518

compaction type keyspace table completed total unit
progress

Compaction data cf 18.71 MB 111.16 MB bytes
16.83%
Active compaction remaining time : 0h00m05s

• A	single	node	doing	compactions	can	cause	latency	
issues	across	the	whole	cluster,	as	it	will	become	
slow	to	respond	to	queries.

• Repair	can	often	be	the	cause	a	large	spike	in	
compactions 30

Sprint	10:	Large	partition	and	tombstone

31

32

Otherwise known as chasing 9’s

Partitioning: Diagnosing & Correcting
• Diagnosing

• Overlarge partitions will also show up through long GC pauses and difficulty
streaming data to new nodes

• nodetool cfstats and nodetool cfhistograms provide partition size info.
<10MB green, <100MB amber

• Log file warnings - compacting large partition
• Many issues can be identified from data model review

• Correcting
• Correcting generally requires data model change although depending on the

application, application level change may be possible

33

Examples	of	Large	partitions

~ $ nodetool cfstats -H keyspace.columnfamily
…
Compacted partition minimum bytes: 125 bytes
Compacted partition maximum bytes: 11.51 GB
Compacted partition mean bytes: 844 bytes

$ nodetool cfhistograms keyspace columnfamily
Percentile SSTables Write Latency Read Latency Partition Size Cell Count

(micros) (micros) (bytes)
50% 1.00 14.00 124.00 372 2
75% 1.00 14.00 1916.00 372 2
95% 3.00 24.00 17084.00 1597 12
98% 4.00 35.00 17084.00 3311 24
99% 5.00 50.00 20501.00 4768 42
Min 0.00 4.00 51.00 125 0
Max 5.00 446.00 20501.00 12359319162 129557750

34

Tombstones

• When a row is deleted in C* it is marked with a tombstone (virtual delete).
Tombstones remain in the sstables for at least 10 days by default.

• A high ratio of tombstones to live data can have significant negative
performance impacts (latency)

• Be wary of tombstones when: deleting data, updating with nulls or updating
collection data types.

• Diagnosing
• nodetool cfstats/cfhistograms and log file warnings
• slow read queries, sudden performance issues after a bulk delete

• Correcting
• tune compaction strategy - LCS or TWCS can help in the right

circumstances
• reduce GC grace period & force compaction for emergencies
• review data model/application design to reduce tombstones

35

Sprint 11: Cluster expansion

36

Cluster Changes

Including:
• Adding	and	removing	nodes
• Replacing	dead	nodes
• Adding	a	Data	Center

37

Cluster Changes

Ensure	the	cluster	is	100%	healthy	and	
stable	before	making	ANY	changes.

38

Adding Nodes

• How	do	you	know	when	to	add	nodes?
• When	disks	are	becoming	>70%	full.

• When	CPU/OS	load	is	consistently	high	during	peak	times.

• Tips	for	adding	new	nodes:
• If	using	logical	racks,	add	one	node	to	every	rack	(keep	distribution	even)

• Add	one	node	at	a	time.	

• During	the	joining	process,	the	new	node	will	stream	data	from	the	existing	node.	

• A	joining	node	will	accept	writes	but	not	reads.

• Unthrottle compactions	on	the	JOINING	node	“nodetool setcompactionthroughput 0”

• But	throttle	again	once	node	is	joined.

• Monitor	joining	status	with	“nodetool netstats”	

• After	the	node	has	streamed	and	joined	it	will	have	a	backlog	of	compactions	to	get	through.	

39

Replacing Nodes

• Replacing	a	dead	node	is	similar	to	adding	a	new	one,	but	add	this	line	in	the	
cassandra-env.sh	before bootstrapping:	

-Dcassandra.replace_address_first_boot=<dead_node_ip>

• This	tells	Cassandra	to	stream	data	from	the	other	replicas.
•Note	this	can	take	quite	a	long	time	depending	on	data	size
•Monitor	with	nodetool	netstats

• If	on	>2.2.8	and	replacing	with	a	different	IP	address,	the	node	will	receive	all	
the	writes	while	joining.

• Otherwise,	you	should	run	repair.
• If	the	replacement	process	takes	longer	than max_hint_window_in_ms you should run	
repair	to	make	the	replaced	node	consistent	again,	since	it	missed	ongoing	writes	during	
bootstrapping	(streaming).

40

Adding DC

Why?

• Distribute	workload	across	data	center	or	regions

• Major	topology	change

• Cluster	migration

41

Adding DC: tips
• Ensure	all	keyspaces are	using	NetworkTopologyStrategy
• All	queries	using	LOCAL_*	consistency.	This	ensures	queries	will	not	check	for	replicas	in	the	
new	DC	that	will	be	empty	until	this	process	is	complete.

• All	client	connections	are	restricted	to	connecting	only	to	nodes	in	the	original	DC.	Use	a	data	
center	aware	load	balancing	policy	such	as	DCAwareRoundRobinPolicy.

• Bring	up	the	new	DC	as	a	stand	alone	cluster.
• Provision	nodes	and	configure	Cassandra:
• cluster_name in	yaml must	be	the	SAME	as	the	original	DC.
• DC	name	in	cassandra-rackdc.properties must	be	UNIQUE	in	the	cluster.
• Include	seed	nodes	from	the	other	DC.

• Join	the	new	DC	to	the	old	one:
• Start	cassandra
• Change	replication	on	keyspaces
• Execute	nodetool rebuild	<from	existing	dc>	on	1-3	nodes	at	a	time.

42

ALTER KEYSPACE my_ks WITH replication = { 'class':
'NetworkTopologyStrategy', ‘DC1': 1, ‘DC2': 1, ‘DC3': 1};

• Sprint	1	Data	modeling
• Sprint	2	Cluster	sizing
• Sprint	3	Stress	test
• Sprint	4	Data	modeling	(revisit)
• Sprint	5	Analytics
• Sprint	6	Security
• Sprint	7	Go	Live
• Sprint	8	Monitoring
• Sprint	9	Hello	Compaction	and	Repair
• Sprint	10	Large	partition	and	tombstone
• Sprint	11	Cluster	expansion

</sales_pitch>

Consulting

Cluster review

Kickstarter packageManaged service

Entreprise support

Cluster migration

<sales_pitch>

Christophe	Schmitz
Director	of	Consulting,	Europe
christophe@instaclustr.com

info@instaclustr.com www.instaclustr.com @instaclustr

• Managed service
• Consulting service
• Enterprise support contract

