
Processing 200K Transactions per Second with
Apache Spark and Apache Cassandra

Ben Bromhead Boston Apache Spark Meetup 3 May 2018

Ben Bromhead Boston Apache Spark Meetup 3 May 2018

Or…
we built our own metrics/monitoring stack and it
was worth it…
but you probably shouldn’t do it… probably

/usr/bin/whoami
• Ben Bromhead, CTO of Instaclustr
• We provide managed Cassandra, Spark and Kafka in the

cloud (AWS, GCP, Azure & Softlayer).
• We provide support and services as well for those in

private data centers.
• Manage and support 2k+ nodes.

2

Agenda

• Introduction to Cassandra

• Why Spark + Cassandra

• Problem background and overall architecture

• Implementation process & lessons learned

• What’s next?

3

Introduction to Cassandra

4

NoSQL database

• Highly available
• Master less
• Linear scalability
• Low latency

• No join
• Poor index
• Restricted filtering
• No ACID

• OLTP
• Data ingestion
• Design your requests first, your model second.

Introduction a Cassandra

5

Client

Cassandra is a Distributed Hash Table

Assume Replication Factor of 3

Introduction a Cassandra

6

Sensor Id, Date, Timestamp, metrics1, ..

Spark

7

Spark is a Distributed Big Data Processing Framework

Worker +
Master
(standby)

Worker +
Master
(leader)

Worker +
Master
(standby)

Worker

Worker

Spark + Cassandra

8

Spark Cassandra connector

val rdd = sc.cassandraTable(“my_keyspace", “my_table")

• Joins!
• Filtering!

Spark + Cassandra

9

Problem to solve….

10

Problem background

• How to efficiently monitor > 2000 servers all running Cassandra
• Alerting
• Metric history
• Alert tuning
• Graph / dashboard
• Multi-tenant approach

• Off the shelf systems are available but:
• Flexible enough?
• Learn by using our technology
• Optimizations opportunities.

Problem background

you should just use off the shelf

Implementation Approach

1. Collecting Metrics + Alert

2. Writing metrics

3. Rolling Up metrics

4. Presenting metrics

~ 9(!) months
(with quite a few detours
and distractions)

Solution Overview: instaclustr
monitoring pipeline

Managed
Node

(AWS) x
many

Managed
Node

(Azure) x
many

Managed
Node

(SoftLayer)
x many

Cassandra
+ Spark

(x27)

Riemann
(x3)

RabbitMQ
(x2)

Console/
API
(x2)

Admin
Tools

2000 nodes * ~2,000 metrics /
20 secs = 140k metrics/sec

PagerDuty
Managed

Node
(GCP) x

many

 Monitoring

Managed
Node

(AWS) x
many

Managed
Node

(Azure) x
many

Managed
Node

(SoftLayer)
x many

Cassandra
+ Spark

(x15)

Riemann
(x3)

RabbitMQ
(x2)

Console/
API
(x2)

Admin
Tools

2000 nodes * ~2,000 metrics /
20 secs = 200k metrics/sec

PagerDutyManaged
Node

(GCP) x
many

Data model

CREATE TABLE instametrics.events_raw_5m (

 host text,

 bucket_time timestamp,

 service text,

 time timestamp,

 metric double,

 state text,

 PRIMARY KEY ((host, bucket_time, service), time)

)

Data Model

CREATE TABLE instametrics.host (

 host text PRIMARY KEY

)

CREATE TABLE instametrics.service_per_host (

 host text,

 service text,

 PRIMARY KEY (host, service)

)

Writing metrics

Key lessons:
• Aligning Data Model with DTCS (now TWCS)

• Initial design did not have time value in partition key

• Settled on bucketing by 5 mins
• Enables DTCS to work

• Works really well for extracting data for roll-up

• Adds complexity for retrieving data

• Batching of writes
• Found batching of 200 rows per insert to provide optimal throughput and client load

• Controlling data volumes from column family metrics
• Limited, rotating set of CFs per check-in

• Managing back pressure is important

Cassandra
+ Spark

(x15)

Riemann
(x3)

Rolling Up metrics

• Developing functional solution was easy, getting to acceptable performance was
hard (and time consuming) but seemed easy once we’d solved it

Cassandra
+ Spark

(x21)

Data Model

CREATE TABLE instametrics_rollup.events_rollup_300 (

 bucket_time timestamp,

 host text,

 service text,

 time timestamp,

 avg double,

 max double,

 min double,

 state text,

 PRIMARY KEY ((bucket_time, host, service), time)
20

Rolling Up metrics

• Developing functional solution was easy, getting to acceptable performance was
hard (and time consuming) but seemed easy once we’d solved it

• Keys to performance?
• Align raw data partition bucketing with roll-up timeframe (5 mins)

• Use repartitionByCassandraReplica to align Spark partitions with Cassandra partitions

• Use joinWithCassandra table to extract the required data – 2-3x performance
improvement over alternate approaches

Cassandra
+ Spark

(x21)

22

Read Tuning:
spark.cassandra.input.fetch.size_in_rows
spark.cassandra.input.reads_per_sec

Write Tuning:
spark.cassandra.output.throughput_mb_per_sec

5min – hourly – daily
rollup

Presenting metrics

• Generally, just worked

• Main challenge was dealing with how to find latest data in rollup buckets
when not all data is reported in each data set

Optimisation with Cassandra Aggregation

• Upgraded to Cassandra 3.7 and change code to use Cassandra aggregates:
 val RDDJoin = sc.cassandraTable[(String, String)]("instametrics" ,
"service_per_host")
 .filter(a => broadcastListEventAll.value.map(r =>
a._2.matches(r)).foldLeft(false)(_ || _))
 .map(a => (a._1, dateBucket, a._2))
 .repartitionByCassandraReplica("instametrics", "events_raw_5m", 100)
 .joinWithCassandraTable("instametrics", "events_raw_5m",
 SomeColumns("time", "state", FunctionCallRef("avg",
Seq(Right("metric")), Some("avg")), FunctionCallRef("max",
Seq(Right("metric")), Some("max")), FunctionCallRef("min",
Seq(Right("metric")), Some("min")))).cache()

• 50% reduction in roll-up job runtime (from 5-6 mins to 2.5-3mins) with reduced CPU
usage

Rolling Up metrics

What’s Next

• Riemann straight to Spark Streaming
• Spark Streaming for 5 min roll-ups rather than save and extract

• Scale-out by adding nodes is working as expected

• Continue to add additional metrics to roll-ups as we add functionality

• Plan to introduce more complex analytics & feed historic values back to
Reimann for use in alerting

Further info:
✓ Scaling Riemann:

https://www.instaclustr.com/blog/2016/05/03/post-500-nodes-high-availability-scalability-with-rie
mann/

✓ Riemann Intro:

https://www.instaclustr.com/blog/2015/12/14/monitoring-cassandra-and-it-infrastructure-with-rie
mann/

✓ Instametrics Case Study:
https://www.instaclustr.com/project/instametrics/

✓ Multi-DC Spark Benchmarks:
https://www.instaclustr.com/blog/2016/04/21/multi-data-center-sparkcassandra-benchmark-round
-2/

✓ Top Spark Cassandra Connector Tips:
https://www.instaclustr.com/blog/2016/03/31/cassandra-connector-for-spark-5-tips-for-success/

✓ Cassandra 3.x upgrade:
https://www.instaclustr.com/blog/2016/11/22/upgrading-instametrics-to-cassandra-3/

✓ Cassandra – Spark MLIB:
 https://www.instaclustr.com/third-contact-monolith-part-c-pod/

https://www.instaclustr.com/blog/2016/05/03/post-500-nodes-high-availability-scalability-with-riemann/
https://www.instaclustr.com/blog/2016/05/03/post-500-nodes-high-availability-scalability-with-riemann/
https://www.instaclustr.com/blog/2015/12/14/monitoring-cassandra-and-it-infrastructure-with-riemann/
https://www.instaclustr.com/blog/2015/12/14/monitoring-cassandra-and-it-infrastructure-with-riemann/
https://www.instaclustr.com/project/instametrics/
https://www.instaclustr.com/blog/2016/04/21/multi-data-center-sparkcassandra-benchmark-round-2/
https://www.instaclustr.com/blog/2016/04/21/multi-data-center-sparkcassandra-benchmark-round-2/
https://www.instaclustr.com/blog/2016/03/31/cassandra-connector-for-spark-5-tips-for-success/
https://www.instaclustr.com/blog/2016/11/22/upgrading-instametrics-to-cassandra-3/
https://www.instaclustr.com/third-contact-monolith-part-c-pod/

Ben Bromhead
CTO, Instaclustr
ben@instaclustr.com

info@instaclustr.com www.instaclustr.com @instaclustr

