
Processing 200K Transactions per Second with
Apache Spark and Apache Cassandra

Ben Bromhead  Boston Apache Spark Meetup  3 May 2018



Ben Bromhead  Boston Apache Spark Meetup  3 May 2018

Or…
we built our own metrics/monitoring stack and it 
was worth it…
but you probably shouldn’t do it… probably



/usr/bin/whoami
• Ben Bromhead, CTO of Instaclustr
• We provide managed Cassandra, Spark and Kafka in the 

cloud (AWS, GCP, Azure & Softlayer).
• We provide support and services as well for those in 

private data centers.
• Manage and support 2k+ nodes.
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Agenda

• Introduction to Cassandra

• Why Spark + Cassandra

• Problem background and overall architecture

• Implementation process & lessons learned

• What’s next?
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Introduction to Cassandra
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NoSQL database

• Highly available
• Master less
• Linear scalability
• Low latency

• No join
• Poor index
• Restricted filtering
• No ACID

• OLTP
• Data ingestion
• Design your requests first, your model second.



Introduction a Cassandra
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Client

Cassandra is a Distributed Hash Table

Assume Replication Factor of 3



Introduction a Cassandra
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Sensor Id, Date,                     Timestamp, metrics1, ..



Spark
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Spark is a Distributed Big Data Processing Framework

Worker + 
Master 
(standby)

Worker + 
Master 
(leader)

Worker + 
Master 
(standby)

Worker

Worker



Spark + Cassandra
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Spark Cassandra connector

val rdd = sc.cassandraTable(“my_keyspace", “my_table")

• Joins!
• Filtering!



Spark + Cassandra
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Problem to solve….
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Problem background

• How to efficiently monitor > 2000 servers all running Cassandra
• Alerting
• Metric history
• Alert tuning
• Graph / dashboard
• Multi-tenant approach

• Off the shelf systems are available but:
• Flexible enough?
• Learn by using our technology
• Optimizations opportunities.



Problem background

you should just use off the shelf



Implementation Approach

1. Collecting Metrics + Alert

2. Writing metrics

3. Rolling Up metrics

4. Presenting metrics

~ 9(!) months 
(with quite a few detours 
and distractions)



Solution Overview: instaclustr
monitoring pipeline
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Data model

CREATE TABLE instametrics.events_raw_5m (

    host text,

    bucket_time timestamp,

    service text,

    time timestamp,

    metric double,

    state text,

    PRIMARY KEY ((host, bucket_time, service), time)

) 



Data Model

CREATE TABLE instametrics.host (

    host text PRIMARY KEY

)

CREATE TABLE instametrics.service_per_host (

    host text,

    service text,

    PRIMARY KEY (host, service)

)



Writing metrics

Key lessons:
• Aligning Data Model with DTCS (now TWCS)

• Initial design did not have time value in partition key

• Settled on bucketing by 5 mins
• Enables DTCS to work

• Works really well for extracting data for roll-up

• Adds complexity for retrieving data

• Batching of writes
• Found batching of 200 rows per insert to provide optimal throughput and client load

• Controlling data volumes from column family metrics
• Limited, rotating set of CFs per check-in

• Managing back pressure is important

Cassandra 
+ Spark 

(x15)

Riemann
(x3)



Rolling Up metrics

• Developing functional solution was easy, getting to acceptable performance was 
hard (and time consuming) but seemed easy once we’d solved it

Cassandra 
+ Spark 

(x21)



Data Model

CREATE TABLE instametrics_rollup.events_rollup_300 (

    bucket_time timestamp,

    host text,

    service text,

    time timestamp,

    avg double,

    max double,

    min double,

    state text,

    PRIMARY KEY ((bucket_time, host, service), time)
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Rolling Up metrics

• Developing functional solution was easy, getting to acceptable performance was 
hard (and time consuming) but seemed easy once we’d solved it

• Keys to performance?
• Align raw data partition bucketing with roll-up timeframe (5 mins)

• Use repartitionByCassandraReplica to align Spark partitions with Cassandra partitions

• Use joinWithCassandra table to extract the required data – 2-3x performance 
improvement over alternate approaches

Cassandra 
+ Spark 

(x21)
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Read Tuning:
spark.cassandra.input.fetch.size_in_rows
spark.cassandra.input.reads_per_sec

Write Tuning:
spark.cassandra.output.throughput_mb_per_sec

5min – hourly – daily 
rollup



Presenting metrics

• Generally, just worked

• Main challenge was dealing with how to find latest data in rollup buckets 
when not all data is reported in each data set



Optimisation with Cassandra Aggregation

• Upgraded to Cassandra 3.7 and change code to use Cassandra aggregates:
 val RDDJoin = sc.cassandraTable[(String, String)]("instametrics" , 
"service_per_host")
     .filter(a => broadcastListEventAll.value.map(r => 
a._2.matches(r)).foldLeft(false)(_ || _))
     .map(a => (a._1, dateBucket, a._2))
     .repartitionByCassandraReplica("instametrics", "events_raw_5m", 100)
     .joinWithCassandraTable("instametrics", "events_raw_5m",
       SomeColumns("time", "state", FunctionCallRef("avg", 
Seq(Right("metric")), Some("avg")), FunctionCallRef("max", 
Seq(Right("metric")), Some("max")), FunctionCallRef("min", 
Seq(Right("metric")), Some("min")))).cache()

• 50% reduction in roll-up job runtime (from 5-6 mins to 2.5-3mins) with reduced CPU 
usage



Rolling Up metrics



What’s Next

• Riemann straight to Spark Streaming
• Spark Streaming for 5 min roll-ups rather than save and extract

• Scale-out by adding nodes is working as expected

• Continue to add additional metrics to roll-ups as we add functionality

• Plan to introduce more complex analytics & feed historic values back to 
Reimann for use in alerting



Further info:
✓ Scaling Riemann: 

https://www.instaclustr.com/blog/2016/05/03/post-500-nodes-high-availability-scalability-with-rie
mann/

✓ Riemann Intro:
 
https://www.instaclustr.com/blog/2015/12/14/monitoring-cassandra-and-it-infrastructure-with-rie
mann/

✓ Instametrics Case Study: 
https://www.instaclustr.com/project/instametrics/

✓ Multi-DC Spark Benchmarks:
https://www.instaclustr.com/blog/2016/04/21/multi-data-center-sparkcassandra-benchmark-round
-2/

✓ Top Spark Cassandra Connector Tips: 
https://www.instaclustr.com/blog/2016/03/31/cassandra-connector-for-spark-5-tips-for-success/

✓ Cassandra 3.x upgrade:
https://www.instaclustr.com/blog/2016/11/22/upgrading-instametrics-to-cassandra-3/

✓ Cassandra – Spark MLIB:
      https://www.instaclustr.com/third-contact-monolith-part-c-pod/

https://www.instaclustr.com/blog/2016/05/03/post-500-nodes-high-availability-scalability-with-riemann/
https://www.instaclustr.com/blog/2016/05/03/post-500-nodes-high-availability-scalability-with-riemann/
https://www.instaclustr.com/blog/2015/12/14/monitoring-cassandra-and-it-infrastructure-with-riemann/
https://www.instaclustr.com/blog/2015/12/14/monitoring-cassandra-and-it-infrastructure-with-riemann/
https://www.instaclustr.com/project/instametrics/
https://www.instaclustr.com/blog/2016/04/21/multi-data-center-sparkcassandra-benchmark-round-2/
https://www.instaclustr.com/blog/2016/04/21/multi-data-center-sparkcassandra-benchmark-round-2/
https://www.instaclustr.com/blog/2016/03/31/cassandra-connector-for-spark-5-tips-for-success/
https://www.instaclustr.com/blog/2016/11/22/upgrading-instametrics-to-cassandra-3/
https://www.instaclustr.com/third-contact-monolith-part-c-pod/
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