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Or...
we built our own metrics/monitoring stack and it

was worth it...
but you probably shouldn’t do it... probably

Ben Bromhead Boston Apache Spark Meetup 3 May 2018



/usr/bin/whoami > instaclustr

« Ben Bromhead, CTO of Instaclustr

 We provide managed Cassandra, Spark and Kafka in the
cloud (AWS, GCP, Azure & Softlayer).

* We provide support and services as well for those in
private data centers.

 Manage and support 2k+ nodes.
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* Introduction to Cassandra

* Why Spark + Cassandra

* Problem background and overall architecture
* Implementation process & lessons learned

 What’s next?
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cassandra

NoSQL database
* Highly available . o
 Master less NOJOI_n
. Linear scalabilit » Poor index
. Low latency / * Restricted filtering

* No ACID
e OLTP

» Data ingestion
« Design your requests first, your model second.
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Cassandra is a Distributed Hash Table
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Introduction a Cassandra
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Spark is a Distributed Big Data Processing Framework

Worker +
Master
(standby)

Spa

Worker +
Master
(standby)



Spark + Cassandra £ instaclustr

 Joins!
* Filtering!

Spark Cassandra connector

val rdd = sc.cassandraTable(“my_keyspace", “my_table")
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Problem to solve....

10



Problem background £y instaclustr

* How to efficiently monitor > 2000 servers all running Cassandra
* Alerting
* Metric history
e Alert tuning
* Graph / dashboard
 Multi-tenant approach

* Off the shelf systems are available but:
* Flexible enough?
e Learn by using our technology
* Optimizations opportunities.
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Friend: You know drinki
-is-badfoeryoeu—you should just use off the shelf

Me:

oF

cassandra




Implementation Approach £y instaclustr

| want it done by naptime

1. Collecting Metrics + Alert
2. Writing metrics

3. Rolling Up metrics

4. Presenting metrics

- 9(!) months Bl w by Bl b g
L] [ ] | . '
(with quite a few detours | don't care how many Legos it takes!
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and distractions)
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monitoring pipeline
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Node
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Node
(GCP) x
many

2000 nodes * ~2,000 metrics /
20 secs = 140k metrics/sec
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Monitoring

2000 nodes * ~2,000 metrics /

20 secs = 200k metrics/sec
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Data model >

CREATE TABLE instametrics.events_raw 5m( [ CLUSTER )
host text (" DATACENTER \ (  DATACENTER )
- ! (Rack )\ (Rack \ [ Rack ) (Rack ) [Rack ) ["Rack )
bucket_time timestamp, | |
-
SerVice text, Node | "’-“.0_‘?.9 foae hiode NOd;‘ Node Partition Key 2
. . 11 g N
time timestamp, CJIU I e
\—— . S S 2, k\ o’ ot & J
metric double, \_ ),
¢——— Synchronous Write
State teXt, :Z;Tir;?;n Factor=3 in both DCs / Consistency Level = Local Quorum D ERRRR Asynchronous Write

PRIMARY KEY ((host, bucket_time, service), time)
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CREATE TABLE instametrics.host (
host text PRIMARY KEY

CREATE TABLE instametrics.service_per_host (
host text,

service text,
PRIMARY KEY (host, service)



Writing metrics £y instaclustr

Key lessons: - ﬁ\
* Aligning Data Model with DTCS (now TWCS)

(x3) JJJ
* Initial design did not have time value in partition key N

* Settled on bucketing by 5 mins
Enables DTCS to work
Works really well for extracting data for roll-up

Adds complexity for retrieving data
* Batching of writes
* Found batching of 200 rows per insert to provide optimal throughput and client load
* Controlling data volumes from column family metrics
* Limited, rotating set of CFs per check-in
* Managing back pressure is important
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Rolling Up metrics

.

* Developing functional solution was easy, getting to acceptable performance was
hard (and time consuming) but seemed easy once we’d solved it

L why hé&éjust
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Data Model > instaclustr

CREATE TABLE instametrics_rollup.events rollup 300 (
bucket time timestamp,

host text,
service text,

time timestamp,

avg double,

max double,

min double,

state text,

PRIMARY KEY ((bucket_time, host, service), time)

20
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Rolling Up metrics

.

* Developing functional solution was easy, getting to acceptable performance was
hard (and time consuming) but seemed easy once we’d solved it

* Keys to performance?
* Align raw data partition bucketing with roll-up timeframe (5 mins)
* Use repartitionByCassandraReplica to align Spark partitions with Cassandra partitions

* Use joinWithCassandra table to extract the required data — 2-3x performance
improvement over alternate approaches
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C1 Read Tuning:
spark.cassandra.input.fetch.size in_rows
spark.cassandra.input.reads _per_sec

cassandra
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Write Tuning:
spark.cassandra.output.throughput_mb_per_sec

Workers
US East (Northern Virginia) - Amazon Web Services (VPC)

ID Address State CPU Cores in Use Memory in Use

5 min — hou rly — d al Iy worker-20170704000432-10.224.157.209-42317 10.224.157.209 ALIVE W n
rOI I u p worker-20170710001210-10.224.16.0-43409 10.224.16.0 ALIVE W
worker-20170710001333-10.224.173.178-40501 10.224.173.178 ALIVE il SRy .
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* Generally, just worked

* Main challenge was dealing with how to find latest data in rollup buckets
when not all data is reported in each data set
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Optimisation with Cassandra Aggregation {3

* Upgraded to Cassandra 3.7 and change code to use Cassandra aggregates:
val RDDJoin = sc.cassandraTable[ (String, String)] ("instametrics" ,
"service per host")
.filter (a => broadcastListEventAll.value.map(r =>
a. 2.matches(r)) .foldLeft (false) ([ ))
.map (a => (a. 1, dateBucket, a. 2))
.repartitionByCassandraReplica ("instametrics", "events raw 5m", 100)
.JoinWithCassandraTable ("instametrics", "events raw 5m",
SomeColumns ("time", "state", FunctionCallRef ("avg",

Seq(Right ("metric")), Some("avg")), FunctionCallRef ("max",
Seqg (Right ("metric")), Some("max")), FunctionCallRef ("min",
Seqg (Right ("metric")), Some ("min")))) .cache()

* 50% reduction in roll-up job runtime (from 5-6 mins to 2.5-3mins) with reduced CPU
usage



Rolling Up metrics £y instaclustr

"So | should just sit down here while you
paint my por - oh you're done"
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* Riemann straight to Spark Streaming
® Spark Streaming for 5 min roll-ups rather than save and extract

e Scale-out by adding nodes is working as expected
* Continue to add additional metrics to roll-ups as we add functionality

* Plan to introduce more complex analytics & feed historic values back to
Reimann for use in alerting
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Scaling Ri : ﬂSta(jUStr
g Riemann:

https://www.instaclustr.com/blog/2016/05/03/post-500-nodes-high-availability-scalability-with-rie
mann/

Riemann Intro:

https://www.instaclustr.com/blog/2015/12/14/monitoring-cassandra-and-it-infrastructure-with-rie
mann/

Instametrics Case Study:

https://www.instaclustr.com/project/instametrics/

Multi-DC Spark Benchmarks:
https://www.instaclustr.com/blog/2016/04/21/multi-data-center-sparkcassandra-benchmark-round
-2/

Top Spark Cassandra Connector Tips:
https://www.instaclustr.com/blog/2016/03/31/cassandra-connector-for-spark-5-tips-for-success/
Cassandra 3.x upgrade:
https://www.instaclustr.com/blog/2016/11/22/upgrading-instametrics-to-cassandra-3/
Cassandra — Spark MLIB:
https://www.instaclustr.com/third-contact-monolith-part-c-0@g/e. tactwitha Moroiit:

Part C - In the Pod Third Contact
with a Monolith:
Friday 29th September 2017 by Paul Brebner Part C - In the Pod
A simple classification problem: Will the Monolith

<3 instaclustr

react? Is it safe?! Maybe a cautious approach to a

bigger version of the Monolith (2km long) in a POD
that is only 2m in diameter...
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Ben Bromhead
CTO, Instaclustr
ben@instaclustr.com

info@instaclustr.com www.instaclustr.com @instaclustr



