Y instaclustr

Processing 200K Transactions per Second with
Apache Spark and Apache Cassandra

Ben Bromhead Boston Apache Spark Meetup 3 May 2018

Y instaclustr

Or...
we built our own metrics/monitoring stack and it

was worth it...
but you probably shouldn’t do it... probably

Ben Bromhead Boston Apache Spark Meetup 3 May 2018

/usr/bin/whoami > instaclustr

« Ben Bromhead, CTO of Instaclustr

 We provide managed Cassandra, Spark and Kafka in the
cloud (AWS, GCP, Azure & Softlayer).

* We provide support and services as well for those in
private data centers.

 Manage and support 2k+ nodes.

Agenda £y instaclustr

* Introduction to Cassandra

* Why Spark + Cassandra

* Problem background and overall architecture
* Implementation process & lessons learned

 What’s next?

Introduction to Cassandra S .2 > instaclustr

cassandra

NoSQL database
* Highly available . o
 Master less NOJOI_n
. Linear scalabilit » Poor index
. Low latency / * Restricted filtering

* No ACID
e OLTP

» Data ingestion
« Design your requests first, your model second.

Introduction a Cassandra > instaclustr

Cassandra is a Distributed Hash Table

-
o
1 TTTITH

S
!!
S|

%

L& e
cassandra &l
[CHE&

=

=

_
-

(CHE

Assume Replication Factor of 3

Introduction a Cassandra

(

I\

k& 4

)

~

CLUSTER

~ DATACENTER \ [DATACENTER)
(Rack Y{ Rack Y{ Rack) Rack \ (Rack \ [Rack)
Node Node [] Node‘ 1 11 Node l.\l;).d.e.;—'-Node <

‘ = R 4 4.

Node "'-N.ode Node Node Node | Node

. | y\\\
Node || Node || Node, || . L] Node, | | Node | | Node J

\ -) Q¥ &

<> iInstaclustr
r==—=—====== 1
| Sensor Id, Date, | Timestamp, metrics1, ..
o - - - e . . . - =

Partition Key 2

Assumes:
Replication Factor=3 in both DCs / Consistency Level = Local Quorum

Partition Key 3

 —

Synchronous Write

Asynchronous Write

Spark £ instaclustr

Spark is a Distributed Big Data Processing Framework

Worker +
Master
(standby)

Spa

Worker +
Master
(standby)

Spark + Cassandra £ instaclustr

 Joins!
* Filtering!

Spark Cassandra connector

val rdd = sc.cassandraTable(“my_keyspace", “my_table")

Spark + Cassandra £ instaclustr

cassandra

.S‘pofltZ

cassandra

Spor‘l'(\'—{

V.S.

o) 4
cassandra
Spor‘llg

> instaclustr

Problem to solve....

10

Problem background £y instaclustr

* How to efficiently monitor > 2000 servers all running Cassandra
* Alerting
* Metric history
e Alert tuning
* Graph / dashboard
 Multi-tenant approach

* Off the shelf systems are available but:
* Flexible enough?
e Learn by using our technology
* Optimizations opportunities.

Problem background £y instaclustr

Friend: You know drinki
-is-badfoeryoeu—you should just use off the shelf

Me:

oF

cassandra

Implementation Approach £y instaclustr

| want it done by naptime

1. Collecting Metrics + Alert
2. Writing metrics

3. Rolling Up metrics

4. Presenting metrics

- 9(!) months Bl w by Bl b g
L] [] | . '
(with quite a few detours | don't care how many Legos it takes!

- R R
KN

and distractions)

Solution Overview: instaclustr

monitoring pipeline

Managed
Node
(AWS) x
many

Managed
Node
(Azure) x
many

Managed
Node

(SoftLayer)

X many

Managed
Node
(GCP) x
many

2000 nodes * ~2,000 metrics /
20 secs = 140k metrics/sec

10.224.33.209 us-east-1a 10.224.9.203 us-east-1a 10.224.58.95 us-east-1a

S VOV Y W\ | W Uy Sy Y W B J’\/’\-«/\,‘/w\\»’
CPU Usage 50.0% 3:58:07 PM CPU Usage 49.4% 3:57:54 PM CPU Usage 63.1% 3:57:55 PM
Disk Usage 40.8% 3:58:07 PM Disk Usage 38.0% 3:58:15 PM Disk Usage 39.6% 3:57:55 PM
2894 A . 22908 s _ - 208

W W VEEENW W V W W V"
Reads/sec 25.8 3:58:07 PM Reads/sec 155.2 3:58:15 PM Reads/sec 159.8 3:57:55 PM
00 0.6 00
Writes/sec 751.3 3:58:07 PM Writes/sec 776.4 3:58:15 PM Writes/sec 884.0 3:57:55 PM
10.224.101.175 us-east-1¢ 10.224.98.106 us-east-1¢ 10.224.82.230 us-east-1c

TV Gy Y W) Aoz o 4 6 _ &
CPU Usage 59.0% 3:58:04 PM CPU Usage 98.9% 3:57:52 PM CPU Usage 42.7% 3:58:01 PM
Disk Usage 43.1% 3:58:04 PM Disk Usage 36.3% 3:57:52 PM Disk Usage 48.5% 3:58:01 PM

AR AN A NS W N

Reads/sec 183.6 3:58:04 PM ConSOIG/ 3:57:52 PM Reads/sec 9.0 3:58:01 PM
00 00
Writes/sec 883.8 3:58:04 PM (X2) 3:57:52 PM Writes/sec 891.2 3:58:01 PM
-

(Riemann

(x2)

RabbitMQ m

Admin
Tools

L (x3)

N
-

Monitoring

2000 nodes * ~2,000 metrics /

20 secs = 200k metrics/sec
Managed

Node
(AWS) x
many

Managed
Node

10.224.33.209 us-east-1a

100%

E
|

o

CPU Usage 50.0% 3:58:07 PM

100%
a—r._

Disk Usage 40.8% 3:58:07 PM

2594
200

|
E

o0

Reads/sec 25.8 3:58:07 PM
s o
so0 ,’\ /

ikl e oo
Writes/sec 751.3 3:56:07 PM
10.224.101.175 us-east-1c
o

nl‘-—l—“
CPU Usage 59.0% 3:58:04 PM
o)

v, e

Disk Usage 43.1%

2981
2000

00!
Reads/sec 183.6

strsy

800 \ £
00 e B S S—

Wirites/sec 883.8 3:58:04 PM

(Azure) x
many RabbltMQ
(x2) JJJ
Managed g

Node
(SoftLayer)
X many

Managed
Node
(GCP) x
many

.

(Riemann

(x3)

N\

-

10.224.9.203 us-east-1a

100%

o%
CPU Usage 49.4% 3:57:54 PM
100%
m._
Disk Usage 38.0% 3:58:15 PM

2308

00

Reads/sec 155.2 3:58:15 PM
azrsy 3
wh A y

” A ‘«.,,/ A el
Writes/sec 776.4 3:58:15 PM
10.224.98.106 us-east-1¢
100%

I
CPU Usage 98.9% 3:57:52 PM
100%

o
Disk Usage 36.3% 3:57:52 PM

3818

3:57:52 PM
4

4

3:57:52 PM

10.224.58.95 us-east-1a

100%

|

o
CPU Usage 63.1% 3:57:55 PM
100%

- |
Disk Usage 39.6% 3:57:55 PM
208

00
Reads/sec 159.8 3:57:55 PM
8840 y

. A 4
s000f8 A 4

} OV Som——
Writes/sec 884.0 3:57:55 PM
10.224.82.230 us-east-1c
100%

|

o
CPU Usage 42.7% 3:58:01 PM
100%

~ I
Disk Usage 48.5% 3:58:01 PM

2608
2000

I

Reads/sec 9.0 3:58:01 PM
T p
500.0 8 ,I.,
A A
Writes/sec 891.2 3:58:01 PM

Nnstaclustr

Data model >

CREATE TABLE instametrics.events_raw 5m([CLUSTER)
host text (" DATACENTER \ (DATACENTER)
- ! (Rack)\ (Rack \ [Rack) (Rack) [Rack) ["Rack)
bucket_time timestamp, | |
-
SerVice text, Node | "’-“.0_‘?.9 foae hiode NOd;‘ Node Partition Key 2
. . 11 g N
time timestamp, CJIU I e
\—— . S S 2, k\ o’ ot & J
metric double, _),
¢——— Synchronous Write
State teXt, :Z;Tir;?;n Factor=3 in both DCs / Consistency Level = Local Quorum D ERRRR Asynchronous Write

PRIMARY KEY ((host, bucket_time, service), time)

Data Model > instaclustr

CREATE TABLE instametrics.host (
host text PRIMARY KEY

CREATE TABLE instametrics.service_per_host (
host text,

service text,
PRIMARY KEY (host, service)

Writing metrics £y instaclustr

Key lessons: - ﬁ\
* Aligning Data Model with DTCS (now TWCS)

(x3) JJJ
* Initial design did not have time value in partition key N

* Settled on bucketing by 5 mins
Enables DTCS to work
Works really well for extracting data for roll-up

Adds complexity for retrieving data
* Batching of writes
* Found batching of 200 rows per insert to provide optimal throughput and client load
* Controlling data volumes from column family metrics
* Limited, rotating set of CFs per check-in
* Managing back pressure is important

Nnstaclustr

7°N\
[] []
\o/

Rolling Up metrics

.

* Developing functional solution was easy, getting to acceptable performance was
hard (and time consuming) but seemed easy once we’d solved it

L why hé&éjust

= a1 staprating’on uber?
WO R gy |

N

Data Model > instaclustr

CREATE TABLE instametrics_rollup.events rollup 300 (
bucket time timestamp,

host text,
service text,

time timestamp,

avg double,

max double,

min double,

state text,

PRIMARY KEY ((bucket_time, host, service), time)

20

> instaclustr

Rolling Up metrics

.

* Developing functional solution was easy, getting to acceptable performance was
hard (and time consuming) but seemed easy once we’d solved it

* Keys to performance?
* Align raw data partition bucketing with roll-up timeframe (5 mins)
* Use repartitionByCassandraReplica to align Spark partitions with Cassandra partitions

* Use joinWithCassandra table to extract the required data — 2-3x performance
improvement over alternate approaches

> instaclustr

C1 Read Tuning:
spark.cassandra.input.fetch.size in_rows
spark.cassandra.input.reads _per_sec

cassandra

Spoﬁ'g

CHE

cassandra

£ E%W ?

cassandra

Spor‘llg

quﬁ(?

Write Tuning:
spark.cassandra.output.throughput_mb_per_sec

Workers
US East (Northern Virginia) - Amazon Web Services (VPC)

ID Address State CPU Cores in Use Memory in Use

5 min — hou rly — d al Iy worker-20170704000432-10.224.157.209-42317 10.224.157.209 ALIVE W n
rOI I u p worker-20170710001210-10.224.16.0-43409 10.224.16.0 ALIVE W
worker-20170710001333-10.224.173.178-40501 10.224.173.178 ALIVE il SRy .

Presenting metrics £y instaclustr

* Generally, just worked

* Main challenge was dealing with how to find latest data in rollup buckets
when not all data is reported in each data set

Nnstaclustr

Optimisation with Cassandra Aggregation {3

* Upgraded to Cassandra 3.7 and change code to use Cassandra aggregates:
val RDDJoin = sc.cassandraTable[(String, String)] ("instametrics" ,
"service per host")
.filter (a => broadcastListEventAll.value.map(r =>
a. 2.matches(r)) .foldLeft (false) ([))
.map (a => (a. 1, dateBucket, a. 2))
.repartitionByCassandraReplica ("instametrics", "events raw 5m", 100)
.JoinWithCassandraTable ("instametrics", "events raw 5m",
SomeColumns ("time", "state", FunctionCallRef ("avg",

Seq(Right ("metric")), Some("avg")), FunctionCallRef ("max",
Seqg (Right ("metric")), Some("max")), FunctionCallRef ("min",
Seqg (Right ("metric")), Some ("min")))) .cache()

* 50% reduction in roll-up job runtime (from 5-6 mins to 2.5-3mins) with reduced CPU
usage

Rolling Up metrics £y instaclustr

"So | should just sit down here while you
paint my por - oh you're done"

What’s Next > instaclustr

* Riemann straight to Spark Streaming
® Spark Streaming for 5 min roll-ups rather than save and extract

e Scale-out by adding nodes is working as expected
* Continue to add additional metrics to roll-ups as we add functionality

* Plan to introduce more complex analytics & feed historic values back to
Reimann for use in alerting

Further info:

v

v

7°N\
[] []
\o/

Scaling Ri : ﬂSta(jUStr
g Riemann:

https://www.instaclustr.com/blog/2016/05/03/post-500-nodes-high-availability-scalability-with-rie
mann/

Riemann Intro:

https://www.instaclustr.com/blog/2015/12/14/monitoring-cassandra-and-it-infrastructure-with-rie
mann/

Instametrics Case Study:

https://www.instaclustr.com/project/instametrics/

Multi-DC Spark Benchmarks:
https://www.instaclustr.com/blog/2016/04/21/multi-data-center-sparkcassandra-benchmark-round
-2/

Top Spark Cassandra Connector Tips:
https://www.instaclustr.com/blog/2016/03/31/cassandra-connector-for-spark-5-tips-for-success/
Cassandra 3.x upgrade:
https://www.instaclustr.com/blog/2016/11/22/upgrading-instametrics-to-cassandra-3/
Cassandra — Spark MLIB:
https://www.instaclustr.com/third-contact-monolith-part-c-0@g/e. tactwitha Moroiit:

Part C - In the Pod Third Contact
with a Monolith:
Friday 29th September 2017 by Paul Brebner Part C - In the Pod
A simple classification problem: Will the Monolith

<3 instaclustr

react? Is it safe?! Maybe a cautious approach to a

bigger version of the Monolith (2km long) in a POD
that is only 2m in diameter...

https://www.instaclustr.com/blog/2016/05/03/post-500-nodes-high-availability-scalability-with-riemann/
https://www.instaclustr.com/blog/2016/05/03/post-500-nodes-high-availability-scalability-with-riemann/
https://www.instaclustr.com/blog/2015/12/14/monitoring-cassandra-and-it-infrastructure-with-riemann/
https://www.instaclustr.com/blog/2015/12/14/monitoring-cassandra-and-it-infrastructure-with-riemann/
https://www.instaclustr.com/project/instametrics/
https://www.instaclustr.com/blog/2016/04/21/multi-data-center-sparkcassandra-benchmark-round-2/
https://www.instaclustr.com/blog/2016/04/21/multi-data-center-sparkcassandra-benchmark-round-2/
https://www.instaclustr.com/blog/2016/03/31/cassandra-connector-for-spark-5-tips-for-success/
https://www.instaclustr.com/blog/2016/11/22/upgrading-instametrics-to-cassandra-3/
https://www.instaclustr.com/third-contact-monolith-part-c-pod/

Nnstaclustr

7°N\
o [)

Ben Bromhead
CTO, Instaclustr
ben@instaclustr.com

info@instaclustr.com www.instaclustr.com @instaclustr

