

Cassandra and Kubernetes

Adam Zegelin, SVP of Engineering @ Instaclustr
July 2018

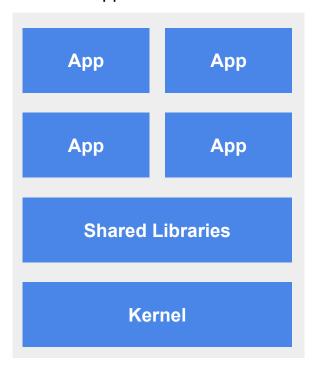
/usr/bin/whoami

- Adam Zegelin
 - SVP of Engineering/Co-founder @ Instaclustr
- We provide managed Cassandra, Spark and Kafka in the cloud (AWS, GCP, Azure & Softlayer).
- We provide support (24x7x365) and services for customers in private data centers.
- Manage and support 2k+ nodes.

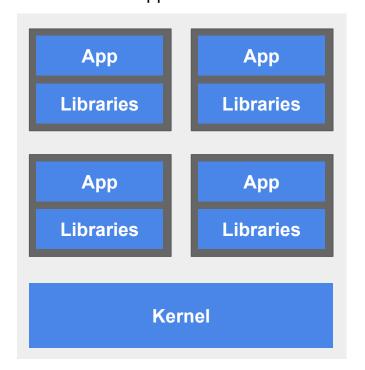
Agenda

- Containers and Kubernetes
- Kubernetes and state
- Running Cassandra on Kubernetes

Containers - For managers



Essentially a way to bundle all the dependencies of a given process and keep it isolated...


Containers - For managers

Old: Applications on host

New: Apps in Containers

Containers - For managers

What does this actually get you

- Separation of concerns.
 - Developers can build an application/service and deliver it as a container that has defined interfaces.
 - Operators don't (generally) care what's inside the container.
- Reproducible artefacts that are the same across all environments.
 - That image you built on your laptop can be validated, tested and put into production with no changes.
- "Lightweight VMs"
- Simplifies package management
- A building block for a microservices architecture

Containers - For engineers

A container is made up of a few things:

- Process and resource isolation. Shares the host kernel but can't "see" other processes, can have CPU, IO and RAM limits, etc.
- Equivalent of a chroot environment. Bring your own userland. Need specific/unique libraries, services, binaries, or distro for your app? Done.
- Some sort of image. Contains files, binaries, libraries, for everything that will be run in the isolated environment. Typically an archive, but can also be a disk image (separate filesystem)

Containers

Containers	Zones	Jails	VMs
(Linux)	(Solaris)	(BSD)	First class
Cgroups Namespaces chroot env AUFS etc	First class concept	First class concept	concept

SS

Containers

This mix of components is not a bug, but a feature!

- VMs, Jails, Zones, etc. do everything for you, with minimal choice.
- Containers, everything is optional or pluggable
 - Want to allow two container to share the same network namespace?
 Sure go for it!
 - Don't want AUFS? Fine, use BTRFS.
 - Want a good filesystem? Mount a host directory into the container (yay XFS)
- Docker, rkt, containerd, Kubernetes, etc. all try to give you sane defaults so that containers work (somewhat) like VM/Jail/Zones.

Containers

Awesome, so a container is an isolated process that gets its own userspace, which has the side effect of making operations easier!

A service that runs your containers for you, across lots of servers and tries to be smart about it.

Officially: Kubernetes is an open-source platform designed to automate deploying, scaling, and operating application containers.

It won the war:

AWS ECS, Mesosphere, Docker Swarm
All support Kubernetes as a first class citizen

And it's taking over the world:

AWS EKS

Google Cloud Kubernetes Engine

Azure Kubernetes Service

Red Hat OpenShift

Pivotal Kontainer Service

CoreOS

Mesosphere

Docker Swarm

Kubernetes - For engineers

Kubernetes is made up of a few things:

- A database that manages state.
- Services that manage your system and move it from its current state to its intended state
- Tools, APIs, methods and formats for telling Kubernetes what state you want it to be in.

Kubernetes

♦ instaclustr

What do you get with Kubernetes? A lot!

- Managing dependent/related containers
- Managing storage
- Distributing secrets
- Managing application health
- Replication
- Scaling
- Load balancing
- Updates
- RBAC!
- more

Fundamentals of Kubernetes

Before we get any deeper, an introduction to some Kubernetes specific terms

- K8s (industry approved abbreviation for Kubernetes)
- Pod Represents a running process on your cluster.
- Controller A control loop that resolves intended state to actual, the fundamental automation process in Kubernetes. E.g.
 - ReplicaSet A object that defines how pods should be replicated. i.e.
 N pods for a ReplicaSet
 - Deployment controller declarative updates for Pods and ReplicaSets.

Fundamentals of Kubernetes

Controllers are the primary method of mutating infrastructure in Kubernetes. All controllers use the following basic control loop:

- Observe Gather the current state of the system
- Analyze Determine the differences between the current state and intended state
- Act Implement a single action to drive current state closer to intended state.

Kubernetes

But also it sucks... at dealing with state

Kubernetes - Baby steps

Kubernetes has evolved on managing state as it has matured:

- PetSets in Kubernetes 1.3
- StatefulSets in Kubernetes 1.5 (beta)
- StatefulSets in Kubernetes 1.9 (GA)

Kubernetes - StatefulSets

- StatefulSet maintains a sticky identity for each of their Pods.
- StatefulSets are managed by a controller like any other Kubernetes component.
- You use StatefulSets when you need any of the following:
 - Stable, unique network identifiers.
 - Stable, persistent storage.
 - Ordered, graceful deployment and scaling.
 - Ordered, graceful deletion and termination.
 - Ordered, automated rolling updates.

Kubernetes

So we now have the building blocks for managing state in Kubernetes

Kubernetes

Let's take a step back

Putting it all together

- Containers Build, run and deploy things easier
- Kubernetes Run, manage, operate things easier
- Kinda hard to run stateful things, but the fundamentals are there.

So... what about Cassandra?

- As Kubernetes becomes a defacto orchestration API, people will (and do) want to run Cassandra on Kubernetes
- It's easy to get started, harder to run.
- For Instaclustr, Kubernetes does a lot of what we had to do in the past
 - It abstracts the environment we run in
 - Let's us focus on doing cool Cassandra things
 - Less focus on doing boring cloud things

Introducing Cassandra-operator

- Let's build something that runs and operates Cassandra in Kubernetes
- Cassandra-as-a-Service on top of Kubernetes
- Instaclustr in a box

Introducing Cassandra-operator

- Let's build something that runs and operates Cassandra in Kubernetes
- Cassandra-as-a-Service on top of Kubernetes
- Instaclustr in a box
 - Open Source!

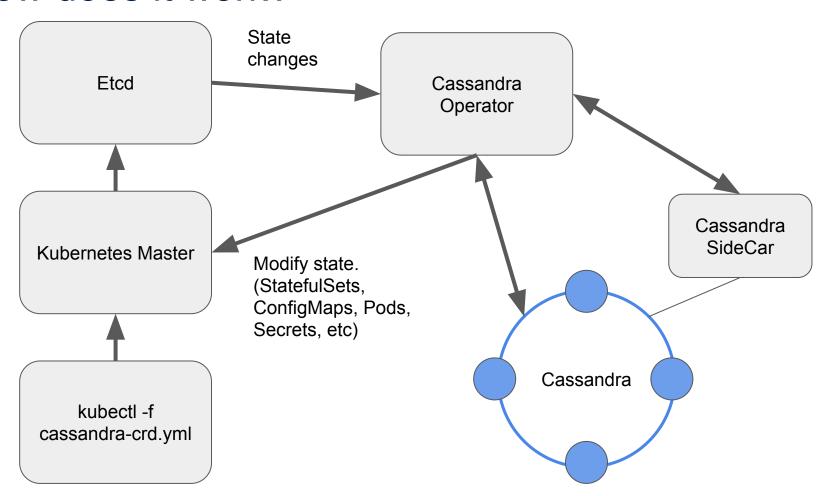
Awesome!...what does it get me?

- Operations "free" Cassandra
- Consistent, reproducible environments
- Best practices are built-in
- Let's your team focus on what matters

What is an operator?

A Kubernetes operator consists of two components:

- A controller
- A Custom Resource Definition


How does it work?

- A custom resource definition (CRD) allows end users to create "Cassandra" objects -- Clusters and Data Centers -- in Kubernetes.
 - Contains configuration options for Cassandra (e.g. node count, JVM tuning options).
- The Cassandra controller listens to state changes on the Cassandra CRDs.
- Modifies StatefulSets and other K8s resources to match the requirements specified in the Cassandra CRD.

How does it work?

♦ instaclustr

Where to get it

https://github.com/instaclustr/cassandra-operator

- Pull requests accepted
- See the project issue tracker for current and future features

: instaclustr

Questions?

Adam Zegelin SVP of Engineering adam@instaclustr.com

