
White Paper

10 RULES FOR MANAGING
Apache Kafka®

White Paper I 210 Rules for managing Apache Kafka®

Table of contents
03 Overview

03 Logs

04 Hardware requirements

04 Apache ZooKeeper™ and KRaft

05 Replication and redundancy

05 Topic config

06 Parallelization

06 Security

07 Open file config

07 Network latency

08 Monitoring

08 Conclusion

White Paper I 310 Rules for managing Apache Kafka®

OVERVIEW
For real time streaming and queuing technology, Apache Kafka® is truly
unrivaled, but it can be an inscrutable beast for newcomers. Without
proper guidance, it’s easy to miss out on Kafka’s full capabilities. While not
the easiest technology to optimize, Kafka rewards those willing to explore
its depths. Under the hood, it is an elegant system for stream processing,
event sourcing, and data integration.

1. Logs
Kafka comes equipped with a multitude of log configurations and
additional tools to complement Kafka’s capabilities. The defaults are
generally suitable for a broad selection of use-cases but most users will
have at least a few things they will need to tweak for their particular use
case. It’s important to consider elements like retention policy, cleanups,
compaction, and compression.

The 3 parameters to focus on are:

•	 log.segment.bytes
•	 log.segment.ms
•	 log.cleanup.policy (or the equivalent settings at the topic level).

For non-critical data, ‘delete’ cleanup policies let Kafka remove logs after
a time or size threshold.

However, for long-term retention, cloud object storage like Amazon S3
combined with analytics tools like OpenSearch® are now commonly used
alongside Kafka’s native storage.
The ‘compact’ policy can reduce on-disk footprint for long-term Kafka log
retention if object storage isn’t used.

In this white paper, we cover the 10 critical rules that
will help you optimize your Kafka system and unlock
its full potential.

White Paper I 410 Rules for managing Apache Kafka®

Adjust log cleanup frequencies carefully, keeping in mind the impact on
CPU and RAM during cleanup. If relying on Kafka as a commit log, ensure
compactions occur often enough without jeopardizing performance.

2. Hardware requirements
When first exploring Kafka, tech teams often take a rough estimate
approach to hardware sizing—spinning up a large server and hoping it
can handle the workload. In reality, Kafka doesn’t necessarily require
a significant amount of resources. While Kafka can run on commodity
hardware, managed services like Instaclustr for Apache Kafka can help
simplify infrastructure management.

If you are taking the ‘do it yourself’ approach, here are some basic points
to remember:

CPU: Doesn’t need to be very powerful unless you’re using SSL and
compressing logs. The more cores, the better for parallelization.

Memory: Kafka works best when it has at least 6 GB of memory for
heap space. The rest will go to the OS page cache which is key for client
throughput. Kafka can run with less RAM but don’t expect it to handle
much load. For heavy production use cases larger RAM would be needed.

Disk: Similar to the point above about RAM, storage capacity needed
is use-case dependent. The storage you need would be directly
proportional to the message size, the throughput and the retention period
for your Kafka cluster.

3. Apache ZooKeeper™ and KRaft
Earlier versions of Apache Kafka relied on Apache ZooKeeper for
managing meta-data on broker information, topic configurations, and
partitions. ZooKeeper provides distributed coordination and consensus for
Kafka but introduces an external dependency.

Recent Kafka versions starting from 3.3 include a new consensus protocol
called Kafka Raft (KRaft) that allows Kafka to manage cluster meta-data
internally without ZooKeeper. KRaft provides a distributed “quorum
controller” natively within Kafka using the Raft consensus algorithm.
Meta-data is stored in an internal Raft log and periodically snapshotted.

White Paper I 510 Rules for managing Apache Kafka®

Compared to ZooKeeper, KRaft improves scalability, recovery time,
monitoring, and security by eliminating the external dependency. Now
that KRaft has reached production-ready status in Kafka 3.3, from version
4.0 onwards the Kafka project will fully drop the ZooKeeper dependency
and make KRaft the default meta-data management method.

By consolidating Kafka’s meta-data management internally, KRaft delivers
simplified operations, better resilience, and removes the need to run
a separate ZooKeeper cluster. Teams currently relying on older Kafka
versions with ZooKeeper can realize significant benefits by migrating to
KRaft when feasible.

4. Replication and redundancy
There are a few key dimensions to consider when thinking about
redundancy with Kafka. The most basic is the replication factor—a setting
of 3 is recommended for most production uses to allow for broker failures.
Alongside the replication factor, you also have to think about availability
zones. You would not want to have your Kafka brokers in different regions
but putting them in different availability zones is a good idea for the sake
of redundancy. Single AZ failures have happened often enough in AWS.

5. Topic config
Your Kafka cluster’s performance will depend greatly on how you
configure your topics. In general, you want to treat topic configuration
as immutable since making changes to things like partition count or
replication factor can cause a lot of pain. Partition count can be increased,
but not decreased. If you find that you need to make a major change to a
topic, often the best solution is to just create a new one. Always test new
topics in a staging environment first.

As mentioned earlier, 3 is a common production replication factor. If you
need to handle large messages, see if you can either break them up into
ordered pieces (with partition keys) or just send pointers to the actual data
(for example, links to S3). If you need to handle larger messages, be sure
to enable compression on the producer’s side. The default log segment
size of 1 GB should be fine (if you are sending messages larger than 1 GB,
reconsider your use case). Partition count, possibly the most important
setting, is addressed in the next section.

White Paper I 610 Rules for managing Apache Kafka®

6. Parallelization
Kafka is built for parallel processing. Partition count is set at the topic
level. The more partitions, the more throughput you can get through
greater parallelization.

The downside is that it will lead to more replication latency, more painful
rebalances, and more open files on your servers; keep these tradeoffs
in mind. The most accurate way to determine optimal partition settings is
to calculate desired throughput against your hardware. Assume a single
partition on a single topic can handle ~10 MB/s (producers can produce
faster than this but it’s a safe baseline) and then figure out what the
desired total throughput is for your system.

If you want to dive in and start testing faster, a good rule of thumb is
to start with 1 partition per broker per topic. If that works smoothly and
you want more throughput, double that number, but try to keep the total
number of partitions for a single topic on a single broker below 10.

For example, if you have 24 partitions and 3 brokers, each broker will be
responsible for 8 partitions, which is generally fine. If you have dozens
of topics an individual broker could easily end up handling hundreds of
partitions. If your cluster’s total number of partitions is north of 10,000
then be sure you have good monitoring because rebalances and outages
could get thorny.

7. Security
Securing Kafka deployments is critical on 2 fronts: infrastructure and
configuration.

Starting with the former, the first goal is isolating Kafka and ZooKeeper.
ZooKeeper should never be exposed to the public internet (except in
unusual use cases). If you are only using ZooKeeper for Kafka, then only
Kafka should be able to talk to it. Restrict your firewalls/ security groups
accordingly. Kafka should be isolated similarly. Ideally, there is some
middleware or load balancing layer between any clients connecting from
the public internet and Kafka itself. Your brokers should reside within a
single private network and by default reject all connections from outside.

Kafka 3.0 and later editions simplify security by removing the ZooKeeper
dependency.

White Paper I 710 Rules for managing Apache Kafka®

Kafka has evolved its native capabilities around encryption,
authentication, and authorization, though enabling security capabilities
is optional. Make sure to enable SSL/ TLS for encryption in transit across
all clients and authentication to verify client identities. Be advised that
using TLS will impact throughput performance. If you can’t spare the CPU
cycles, then you will need to find some other way to isolate and secure
traffic hitting your Kafka brokers. Managed services can also help with
offloading security management.

8. Open file config
Kafka brokers require substantial open file handles for network
connections and log segments. In older versions, careful manual tuning
of Ulimits was needed to prevent brokers from crashing due to too many
open files. However, recent Kafka releases can now dynamically scale
file handles based on actual server loads and usage patterns. Brokers
automatically increase Ulimits if configured to do so. This self-tuning
reduces the need for massive precautionary Ulimit settings.

Of course, continued monitoring of open file usage is advised to catch
any constraints. But the days of pre-emptively setting Ulimits to high
values like 128K+ just to be safe are largely behind us given Kafka’s
improved self-scaling capabilities. Teams can now rely on smarter default
policies and dynamic tuning rather than intensive manual limits and
restarts.

9. Network latency
This one is pretty simple: low latency is going to be your goal with Kafka.
Ideally, you have your brokers geographically located near their clients.
For example, if your producers and consumers are located in the United
States, it’s best not to have your Kafka brokers in Europe. Leverage
Kafka rack awareness features to optimize replication traffic across data
centers.

Also be aware of network performance when choosing instance types
with cloud providers. It may be worthwhile to go for the bigger servers
with AWS that have greater bandwidth if that becomes your bottleneck.

NetApp® Instaclustr specializes in open source technologies for enterprises. Our managed platform streamlines data infrastructure
management, backed by experts who ensure ongoing performance, scalability, and optimization. This enables companies to focus
on building cutting edge applications at lower costs.

© 2025 NetApp, Inc. All rights reserved. NETAPP, the
NETAPP logo, and the marks listed at www.netapp.com/TM
are trademarks of NetApp, Inc. Other company and product
names may be trademarks of their respective owners.

info@instaclustr.com | www.instaclustr.com

1-16apr25

10. Monitoring
(To catch all of the above)
All the above issues can be anticipated at the time of cluster creation.
However, conditions change, and without a proper monitoring and alerting
strategy, you can get bitten by one of these problems down the road.
With Kafka, you want to prioritize 2 basic types of monitoring: system
metrics and JVM stats. For the former, you need to ensure you track
open file handles, network throughput, load, memory, and disk usage
at a minimum. For the latter, be mindful of things like GC pauses and
heap usage. Ideally you will keep a good amount of history and set up
dashboards for quickly debugging issues.

For alerting, you will want to configure your system (Nagios, PagerDuty,
etc.) to warn you about system issues like low disk space or latency
spikes. It is better to get an annoying alert about reaching 90% of your
open file limit than get an alert that your whole system has crashed.

CONCLUSION
Apache Kafka is a powerful distributed streaming platform, but like most
enterprise infrastructure, it requires extensive expertise to maximize
results. While Kafka enables impressive scalability and resilience when
implemented properly, it carries risks if infrastructure and operations
fall short.

Fortunately, maturity within the Kafka ecosystem provides options beyond
just open source Kafka. Managed services from vendors like Instaclustr
allow organizations to realize Kafka’s benefits without managing
operations themselves.

Ready to Experience Instaclustr Managed Apache Kafka®?
Reach out to our Sales team today.

http://www.netapp.com/TM
mailto:info%40instaclustr.com?subject=
https://www.instaclustr.com/
mailto:info%40instaclustr.com?subject=

