
White Paper

Understanding
Apache Kafka®

Overview
Apache Kafka® is a hot technology amongst
application developers and architects looking to
build the latest generation of real-time and web-scale
applications. According the official Apache Kafka®
website “Kafka is used for building real-time data
pipelines and streaming apps. It is horizontally scalable,
fault-tolerant, wicked fast, and runs in production in
thousands of companies.”

This paper will explore that statement in a bit more
detail to help you understand when and why you would
use Kafka in your application and some of the key
considerations when developing and deploying.

Copyright ©2018, 2021, 2022 Instaclustr, All rights reserved.

info@instaclustr.comwww.instaclustr.com @instaclustr 2

Why Use a Queuing or Streaming Engine?
Kafka is part of general family of technologies known as queuing, messaging, or streaming
engines. Other examples in this broad technology family include traditional message queue
technology such RabbitMQ, IBM MQ, and Microsoft Message Queue. It can be said that
Kafka is to traditional queuing technologies as NoSQL technology is to traditional relational
databases.

These newer technologies break through scalability and performance limitations of the
traditional solutions while meeting similar needs, Apache Kafka can also be compared to
proprietary solutions offered by the big cloud providers such as AWS Kinesis, Google Cloud
Dataflow, and Azure Stream Analytics.

The wealth of very popular options in this family of technologies is clear evidence of
real and widespread need. However, it may not be immediately obvious what role these
technologies play in an architecture. Why would I want to stick some other complicated
thing in between the source of my events and the consumers that use the events?

■	 To smooth and increase reliability in the face of temporary spikes in workload.
	 That is to deal gracefully with temporary incoming message rates greater than the
	 processing app can deal with by quickly and safely storing the message until the 	

processing system catches up and can clear the backlog. The engineers at Slack have
published an excellent blog post explaining how they use Kafka for just this purpose in 	
their architecture: https://slack.engineering/scaling-slacks-job-queue-687222e9d100

	 An extension to this buffering case is where the consuming application is completely 	
unavailable. In this case the queuing solution can keep receiving messages from
producers and retain them until the consuming application comes back online. An 		
example of this case might be an IoT application—the devices sending readings are 	
not going to stop sending information because your processing system is down or
under maintenance. However, the messages can be stored in a queue and processed 	
once the outage is finished.

■	 To increase flexibility in your application architecture by completely decoupling 		
applications that produce events from the applications that consume them.

	 This is particularly important to successfully implementing a microservices architecture, 	
the current state of the art in application architectures. By using a queuing system, 	
applications that are producing events simply publish them to a named queue and
applications that are interested in the events consume them off the queue. The
publisher and then consumer don’t need to know anything about each other except for
the name of the queue and the message schema. There can be one or many producers 	
publishing the same kind of message to the queue and one or many consumers reading 	

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
https://slack.engineering/scaling-slacks-job-queue-687222e9d100

info@instaclustr.comwww.instaclustr.com @instaclustr 3

the message and neither side will care.

To illustrate this, consider an architecture where you initially have a web front end that
captures new customer details and some backend process that stores these details in
a database. By putting a queue in the middle and posting “new customer” events to that
queue I can, without changing existing code, do things like:

■	 add an new API application that accepts customer registrations from a new partner and
posts them to the queue; or

■	 add a new consumer application that registers the customer in a CRM system.

Instaclustr’s Kongo series of blog posts provides some very detailed examples and
considerations when architecting an application this way.

Why Use Kafka?

The objectives we’ve mentioned above can be achieved with a range of technologies. So
why would you use Kafka rather than one of those other technologies for your use case?

■	 It’s highly scalable
■	 It’s highly reliable due to built in replication, supporting true always-on operations
■	 It’s Apache Foundation open source with a strong community
■	 It has built-in optimizations such as compression and message batching
■	 It has a strong reputation for being used by leading organizations.
	 For example: LinkedIn (orginator), Pinterest, AirBnB, Datadog, Rabobank, Twitter, 	

Netflix (see https://kafka.apache.org/powered-by for more)
■	 It has a rich ecosystem around it including many connectors

These properties (and others) of Kafka lead it to be suitable for additional architectural
functions compared to the broad family of queuing and streaming engines. In particular,
Kafka can be used as:

■	 A distributed log store in a Kappa architecture
	 In this model, the messages stored in Kafka are the definitive source of truth for your 		

application. You may use a database, caches, and other mechanism to provide views 		
of the state for performance reasons but these can always be recreated from the

	 message stored. This architecture has significant advances for auditability and 		
recovering from errors.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
https://www.instaclustr.com/instaclustr-kongo-iot-logistics-streaming-demo-application/
https://kafka.apache.org/powered-by
http://http://milinda.pathirage.org/kappa-architecture.com/

info@instaclustr.comwww.instaclustr.com @instaclustr 4

■	 A stream processing engine
	 Performing calculations on streams (to provide a simple example—calculating an 	

average value over the last 5 messages or 5 minutes) is a complex, specialist problem
best supported by an architectural framework that allows you to focus on your business 		
logic. The Kafka Streams library provides this stream processing framework for use 		
with Kafka.

Looking Under the Hood

Let’s take a look at how Kafka achieves all this:

We’ll start with PRODUCERS. Producers are the applications that generate events and
publish them to Kafka. Of course, they don’t randomly generate events—they create the
events based on interactions with people, things, or systems. For example a mobile app
could generate an event when someone clicks on a button, an IoT device could generate
an event when a reading occurs, or an API application could generate an event when called
by another application (in fact, it is likely an API application would sit between a mobile app
or IoT device and Kafka). These producer applications use a Kafka producer library (similar
in concept to a database driver) to send events to Kafka with libraries available for Java, C/
C++, Python, Go, and .NET.

The next component to understand is the CONSUMERS. Consumers are applications that
read the event from Kafka and perform some processing on them. Like producers, they can
be written in various languages using the Kafka client libraries.

The core of the system is the Kafka BROKERS. When people talk about a Kafka cluster
they are typically talking about the cluster of brokers. The brokers receive events from the
producer and reliably store them so they can be read by consumers.

The brokers are configured with TOPICS. Topics are a bit like tables in a database,
separating different types of data. Each topic is split into PARTITIONS. When an event
is received, a record is appended to the log file for the topic and partition that the event
belongs to (as determined by the metadata provided by the producer). Each of the
partitions that make up a topic are allocated to the brokers in the cluster. This allows each
broker to share the processing of a topic. When a topic is created, it can be configured to
be replicated multiple times across the cluster so that the data is still available for even if a
server fails. For each partition, there is a single leader broker at any point in time that serves
all reads and writes. The leader is responsible for synchronizing with the replicas. If the
leader fails, Kafka will automatically transfer leader responsibility for its partitions to one of
the replicas.

As well as reliability, this topic and partition schema has implications for scalability. There

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
https://kafka.apache.org/documentation/streams/

info@instaclustr.comwww.instaclustr.com @instaclustr 5

can be as many active brokers receiving and providing events as there are partitions in the
topic so, provided sufficient partitions are configured, Kafka clusters can be scaled-out to
provide increased processing throughput.

In some instances, guaranteed ordering of message delivery is important so that events
are consumed in the same order they are produced. Kafka can support this guarantee at
the topic level. To facilitate this, consumer applications are placed in consumer groups and
within a CONSUMER GROUP a partition is associated with only a single consumer instance
per consumer group.

The following diagram illustrates all these Kafka concepts and their relationships:

Operating Kafka

A Kafka cluster is a complex distributed system with many configuration properties
and possible interactions between components in the system. Operated well, Kafka
can operate at the highest levels of reliability even in relatively unreliable infrastructure
environments such as the cloud.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 6

At a high level, the principles for successfully operating Kafka are the same as other
distributed server systems:

■	 choose a hardware and operating system configuration that is appropriate for the 		
characteristics of the system

■	 have a monitoring system in place, and understand and alert on the key metrics that 		
indicate the health of the system

■	 have documented and tested procedures (or better yet, automated processes) for 		
dealing with failures, and

■	 consider, test, and monitor security of your configuration.

Specifically for Kafka you need to consider factors such as appropriate choice of topics
and partitions, placement of brokers into racks aligned with failure domains and placement,
and configuration of Apache ZooKeeperTM. Our white paper on Ten Rules for Managing
Kafka provides a great primer on the key considerations. Visit our Resource section to
download the same.

Instaclustr Managed Kafka

At Instaclustr, we are specialists in operating distributed systems to provide reliability
at scale. We have more than 175 million node hours of experience managing Apache
Cassandra and Apache SparkTM and have chosen to extend our offering to include Apache
Kafka as a managed service.

We chose to add Kafka to our offering for a number of reasons:

■	 Kafka, like Cassandra and Spark, is used when you need to build applications that 		
support the highest levels of reliability and scale. The three technologies are often used 	
together in a single application. The applications demand the same mission critical 		
levels of service from a managed service provider.

■	 Kafka is Apache Foundation open source software with a massive user community—		
the software is maintained under a robust governance model ensuring it is not overly 		
influenced by commercial interests and that users can freely use the software as they 	
need to. There are no licensing fees and no vendor lock-in.

■	 Kafka has many architectural similarities to Cassandra and Spark allowing us to 		
leverage our operational experience such as tuning and troubleshooting JVMs, dealing 	
with public cloud environments and their idiosyncrasies and operating according to 		
SOC 2 principles for a secure and robust environment.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
https://www.instaclustr.com/resource-type/whitepapers/

info@instaclustr.comwww.instaclustr.com @instaclustr 7

 We see Apache Kafka as a core capability for our architectural strategy
as we scale our business. Getting set up with Instaclustr’s Kafka service
was easy and significantly accelerated our timelines. Instaclustr consulting
services were also instrumental in helping us understand how to properly
use Kafka in our architecture.

Glen McRae, CTO, Lendi

 As very happy users of Instaclustr’s Cassandra and Spark managed
services, we’re excited about the new Apache Kafka managed service.
Instaclustr quickly got us up and running with Kafka and provided the
support we needed throughout the process.

Mike Rogers, CTO, SiteMinder

About
Instaclustr

© 2021 Instaclustr Copyright | Apache®, Apache Cassandra®, Apache Kafka®, Apache Spark™, and Apache ZooKeeper™ are trademarks of The Apache Software Foundation. Elasticsearch™ and Kibana™ are trademarks for
Elasticsearch BV. Kubernetes® is a registered trademark of the Linux Foundation. OpenSearch is a registered trademark of Amazon Web Services. Postgres®, PostgreSQL® and the Slonik Logo are trademarks or registered trademarks
of the PostgreSQL Community Association of Canada, and used with their permission. Redis™ is a trademark of Redis Labs Ltd. *Any rights therein are reserved to Redis Labs Ltd. Cadence is a trademark of Uber Technologies, Inc.
Any use by Instaclustr Pty Limited is for referential purposes only and does not indicate any sponsorship, endorsement or affiliation between Redis and Instaclustr Pty Limited. All product and service names used in this website are for
identification purposes only and do not imply endorsement.

Instaclustr helps organizations deliver applications at scale through its managed platform for open
source technologies such as Apache Cassandra®, Apache Kafka®, Apache Spark™, Redis™,
OpenSearch®, PostgreSQL®, and Cadence®.

Instaclustr combines a complete data infrastructure environment with hands-on technology expertise
to ensure ongoing performance and optimization. By removing the infrastructure complexity, we
enable companies to focus internal development and operational resources on building cutting edge
customer-facing applications at lower cost. Instaclustr customers include some of the largest and
most innovative Fortune 500 companies.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
https://www.instaclustr.com/platform/managed-apache-cassandra/
https://www.instaclustr.com/platform/managed-apache-kafka/
https://www.instaclustr.com/platform/managed-apache-spark/
https://www.instaclustr.com/platform/managed-redis/
https://www.instaclustr.com/platform/managed-opensearch/
https://www.instaclustr.com/platform/managed-postgresql/
https://www.instaclustr.com/platform/managed-cadence/

