
White Paper

Reliable and Scalable Apache
Kafka® Integrations With
Apache Kafka® Connect

Overview
Apache Kafka® Connect provides a robust enterprise
grade integration platform that enables teams to build
data pipelines around Kafka by connecting other data
systems with it.

Kafka Connect is built with similar design principles as
that of Kafka and is inherently scalable and reliable.

Copyright ©2018, 2021, 2022 Instaclustr, All rights reserved.

info@instaclustr.comwww.instaclustr.com @instaclustr 2

A Kafka Connector is a compiled Java program (jar file) to read and write data from a data
system to and from a Kafka topic. For instance, a Kafka Connector can be implemented to
read data from a table in Apache Cassandra® and compose a Kafka message for each row
of table data, and write them to a pre-configured Kafka topic. This has many advantages
over manually writing the code to process data from both systems. A developer simply
configures a Connector to read and write data from a Kafka topic to another data system.
Not only does Kafka Connect lower the barrier to performing ETL type operations, it also
allows you to robustly deploy data pipelines integrating Kafka with previously built and well-
maintained vendor provided Connectors.

Currently, there are dozens of open source and proprietary Connectors available that allow
you to rapidly deploy low-code, config-based Kafka integrations with configurable data
transformations from Kafka to and from other systems.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 3

Key Kafka Connect Concepts

Here are a few core concepts to understand when working with Kafka Connect:

Connector
An object that defines the data import/export tasks needed to integrate a data source or
sink with your Kafka cluster.

 ■	 Source Connector: Creates tasks to read from a data source and write to Kafka.

 ■	 Sink Connector: Creates tasks to read from Kafka and write to a data source.

Kafka Connect Worker
A Java-based OS process that executes tasks as directed by Connectors.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 4

Tasks
The “work” of moving data between Kafka and external data sources and sinks.

A Kafka Connect workflow using MySQL as a source and Elasticsearch
 as a sink with a JSON conversion in between.

Converters
Implements logic that converts data format between Kafka Connect and the connecting
data transfer system. See example conversion diagram above. Conversion activities are
configured for each Connector depending on how the developer wrote the Connectors.
Many ETL tasks are supported from field selection to data type conversions.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 5

Key Kafka Connect Features
Kafka Connect brings standardization and simplicity to Kafka integrations with other data
systems. Kafka Connectors works in a similar way to consumers in a consumer group.
Depending on the number of partitions available in a given topic, a Kafka Connector can
perform ETL type operations in parallel when running in distributed mode. Kafka Connect
can be thought of as an enterprise grade producer and consumer application for ETL type
jobs. These ETL type operations are performed by configuring a Connector using JSON
and a powerful administrative REST API.

The Kafka Connect administrative REST API can be used to deploy Connectors to a
Kafka Connect cluster, and for ongoing orchestration. Developers also benefit from Kafka
Connect’s automated offset management, which handles the offset commit process with
minimal input from Connectors, simplifying and expediting development.

Kafka Connect leverages Kafka’s group management protocol to provide a distributed
and highly scalable architecture whereby developers can simply add workers to expand
capacity whenever needed. It also features a standalone mode appropriate for testing and
down scale deployments.

Sticky Partitions
Kafka Connect workers will generally be assigned the same partitions, which prevents a lot
of issues developers face during a consumer group rebalance event.

Automated Recovery Following a Failure
Source Connectors add source location data to the records they send to Kafka Connect.
If a failure occurs, Kafka Connect automatically sends that data back to the Connector,
enabling it to continue where it left off automatically. This automatic recovery is usually
even simpler for Connectors on the sink end of Kafka Connect.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 6

Automated Failover
In the same way a consumer group operates, if a task fails or exits, the workload will be
distributed to the other workers in the Connector task group. You have the option to
explicitly assign partitions to prevent this behavior if required.

Simple Parallelism
Connectors can spin up task workers equal to the number of partitions in a topic to allow
parallel processing. Tasks are essentially consumers in a consumer group but also perform
some producer operations.

Kafka Connect Use Cases

Kafka Connect’s features make it a useful tool to create data pipelines between Kafka
and another data system, optionally performing ETL operations while moving data. Once
your external data is written to a Kafka topic via a Kafka Source Connector, ideally you
would perform your application logic in the Kafka ecosystem. Once your application logic
decides the data is ready to be moved out of Kafka, you simply write that data to another
topic which is then migrated automatically to another 3rd party system via a Kafka Sink
Connector.

When working with bespoke or high customized applications where additional data
transformation is required, there are some additional scenarios writing your own producers
or consumers might be the right approach. These include:
■	 conditional logic;
■	 domain or business specific logic; or
■	 event driven logic.

Data Pipeline Example: Streaming

Kafka Connect can be used to disseminate data from a streaming application to a
datastore, for example, Cassandra, and to a search technology like Elasticsearch after the
streaming data has been processed by Kafka.

In this open source Kafka Connect demo we created, sample data is ingested by Kafka
which is then written to Cassandra using a Cassandra Sink Connector and written to
Elasticsearch™ using Elasticsearch Sink Connector. The logic to map each Kafka message
to the format into which the data has to be written to Cassandra and Elasticsearch is
implemented in the respective Connectors. The user of these connectors can simply set

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
https://github.com/instaclustr/cassandra-kafka-elasticsearch-open-source

info@instaclustr.comwww.instaclustr.com @instaclustr 7

up some configurations and deploy the connectors to gain the value of the integration and
a data pipeline.

While it might be reasonably simple to implement these integrations as your own producers
and consumers, a large enterprise might be streaming data from several applications
which has to go into 10s and 100s of data systems used by various departments, each
with their own data governance. Using Kafka Connect, complex and large data pipelines
can be built and deployed rapidly, minimizing time to go-live and saving initial and on-going
maintenance costs and headaches.

Data Pipeline Example: Microservices

Application stacks and infrastructures built on the principles of microservices architecture
can be made of 100s and 1000s of disparate and loosely-coupled services that implement
the business logic for a specific responsibility. One of the prime use cases of Kafka is
to act as a bridge between these services to create a streamlined data pipeline that
connects them to different data systems like Apache Cassandra, Elasticsearch, AWS S3
store, Salesforce, etc. While some of these services communicate with Kafka via custom
producers and consumers, almost all of the data systems typically communicate with
Kafka using well known, vendor-offered connectors. There are several benefits that Kafka
Connect brings to the table—reduced time to integrate, faster technology adoption,
simpler and extensible solution design, technical and solution support for vendor-offered
Connectors, low-code config-based integrations with low ongoing investments in
maintaining it.

Kafka
Connector

Kafka
Connector

Kafka
Connector

JSON REST
API

Store the
results long term

in Cassandra

Put the data into
Kafka topics for
temp processing

Search indexes
on results

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 8

Mirroring Use Cases

Kafka MirrorMaker 2.0 is an in-built Mirroring solution packaged as part of Kafka 2.4 and is
designed based on the Kafka Connect framework. The solution is implemented as a Kafka
Connector which copies data from one Kafka cluster to its mirrored cluster.

Brooklin MirrorMaker by LinkedIn, Mirus by Salesforce are other examples of Kafka
Mirroring solutions that are based on the Kafka Connect framework. Some of the use cases
of MirrorMaker 2.0 are:

■	 Geo Proximity: Geographically distributed applications interacting with Kafka with a 		
low-latency requirement may need data to be located close to each region where the 	
application resides. This will require multi-region active-active mirroring which can be 		
achieved using MirrorMaker 2.0.

■	 Disaster Recovery: Business continuity is a critical part of any enterprise solution

design. Its objective is to ensure the recovery of business applications and data when 	
there is a region-wide outage, including, potentially losing all the data residing in that 		
region. If the Kafka cluster is mirrored to another region, the application including all 	
producers and consumers can simply failover to the replica cluster in the other region 	
to recover business operations.

■	 Migration: When you want to migrate an existing Kafka cluster to a new environment 		
(a new cloud, or region, or hybrid cloud etc.), you can first deploy MirrorMaker 2.0 		
on the existing cluster, configure it to mirror the Kafka data to a new cluster in the 		
desired environment, wait for the replica cluster to sync successfully, and then divert all 	
applications to use the replica cluster.

Backup and Restore

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 9

You can backup Kafka data to AWS S3 datastore using the open source S3 connector
we developed on a Kafka Connect cluster. If there is an unrecoverable issue in the Kafka
cluster leading to data loss or data integrity issues, you can use the same S3 Connector,
now as a source, to recover the cluster to a stable state using the S3 backup.

MirrorMaker 2.0 can also be configured to replicate unidirectionally to a replica cluster,
whereby the replica serves purely as a backup of the Kafka data.

How to Launch a Kafka Connect Worker

A Kafka Connect Worker instance is a Java process that can be launched simply with a
shell script. The Worker instance loads (from its Classpath) any custom Connectors named
in the Connector configuration. Configuration is read from a Kafka topic in distributed mode
or entered via command line in standalone mode. For users working with containerized
environments, a standard Docker container image is available for launching workers. All
launched instances of the image configured with the same Kafka message broker cluster
and group-id will work together in a distributed manner.

Dependencies

In both standalone and distributed modes, Kafka Connect nodes must be Connected
to a Kafka message broker cluster. Distributed mode has no other dependencies. Kafka
Connect nodes are fully stateless as all required configurations and offset information
are stored in a Kafka topic. In standalone mode, local disk storage is necessary to store
Connector configurations and offset information to continue reading or writing data.

REST API

Every Kafka Connect worker instance functions as an embedded web server that
presents a set of administrative REST APIs for configuration and status queries. Workers
in distributed mode have their configurations uploaded via the REST API, and then stored
within internal Kafka message broker topics. The REST API configurations are not needed
for workers in standalone mode.

REST APIs are utilized to deploy and manage Connectors, enable tasks such as pausing
and resuming Connectors, perform status checks, and more.

Kafka Connect Configuration

Kafka Connect workers can be configured through a worker configuration properties file.
In distributed mode, all workers configured with the same group.id and share the same
Connector configurations, offset data, and status updates (defined by config.storage.topic,

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
https://github.com/instaclustr/kafka-connect-connectors

info@instaclustr.comwww.instaclustr.com @instaclustr 10

offset.storage.topic and status.storage.topic, respectively) will discover one another and
form a Kafka Connect cluster automatically. To create another cluster, workers must have a
new set of values for each of these properties but most importantly a different group.id.

Workers in distributed mode retrieve their Connector or task configuration from a Kafka
topic that is named in the worker config file. Workers in standalone mode can have their
config file (pointing to the Connector to use) specified from the command line.

Common worker configurations include key.converter and value.converter
properties, specifying the use of converters such the AvroConverter, JsonConverter,
ByteArrayConverter, or StringConverter.

Kafka Connect Worker Connections with Kafka Message Brokers

In distributed mode, all workers make a connection with the Kafka message broker
cluster. The settings involved with these connections are top-level settings in the worker
configuration file, many of which are inherited from Kafka settings. Each Connector also
has its own connection to the Kafka message broker cluster. To control the Kafka client
settings for these connections and set them differently from the existing Kafka settings,
add the prefix “producer” in the configuration for sources, or “consumer” for sinks.

 Security

It’s critical to ensure that Kafka Connect is configured for the same security measures
that are enabled within your Kafka cluster, such as SSL or Kerberos encryption or
authentication. To secure the REST API you will have to follow the well documented
procedures to creating a secure Kafka Cluster, please refer to the official Apache Kafka
documentation on setting up the Kafka Connect Rest API here.

Some of the Popular Open Source Connectors

Here at Instaclustr we value and support true open source solutions. The stream-reactor
library has a list of popular Apache 2 licensed Connectors that you may find useful for your
Kafka and Kafka connect use cases. We’ve built an open source S3 Connector and you can
get in touch for advice on building your own Connectors.

Summary

Kafka Connect offers powerful options to combine the advantages of Kafka with other data
systems, and to build data pipelines to serve your business and operational needs.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
http://kafka.apache.org/documentation/#connect_rest
https://github.com/lensesio/stream-reactor

info@instaclustr.comwww.instaclustr.com @instaclustr 11

About
Instaclustr

© 2021 Instaclustr Copyright | Apache®, Apache Cassandra®, Apache Kafka®, Apache Spark™, and Apache ZooKeeper™ are trademarks of The Apache Software Foundation. Elasticsearch™ and Kibana™ are trademarks for
Elasticsearch BV. Kubernetes® is a registered trademark of the Linux Foundation. OpenSearch is a registered trademark of Amazon Web Services. Postgres®, PostgreSQL® and the Slonik Logo are trademarks or registered trademarks
of the PostgreSQL Community Association of Canada, and used with their permission. Redis™ is a trademark of Redis Labs Ltd. *Any rights therein are reserved to Redis Labs Ltd. Cadence is a trademark of Uber Technologies, Inc.
Any use by Instaclustr Pty Limited is for referential purposes only and does not indicate any sponsorship, endorsement or affiliation between Redis and Instaclustr Pty Limited. All product and service names used in this website are for
identification purposes only and do not imply endorsement.

Instaclustr helps organizations deliver applications at scale through its managed platform for open
source technologies such as Apache Cassandra®, Apache Kafka®, Apache Spark™, Redis™,
OpenSearch®, PostgreSQL®, and Cadence®.

Instaclustr combines a complete data infrastructure environment with hands-on technology expertise
to ensure ongoing performance and optimization. By removing the infrastructure complexity, we
enable companies to focus internal development and operational resources on building cutting edge
customer-facing applications at lower cost. Instaclustr customers include some of the largest and
most innovative Fortune 500 companies.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
https://www.instaclustr.com/platform/managed-apache-cassandra/
https://www.instaclustr.com/platform/managed-apache-kafka/
https://www.instaclustr.com/platform/managed-apache-spark/
https://www.instaclustr.com/platform/managed-redis/
https://www.instaclustr.com/platform/managed-opensearch/
https://www.instaclustr.com/platform/managed-postgresql/
https://www.instaclustr.com/platform/managed-cadence/

