
White Paper

Understanding Cadence
Workflow for Developers
and Architects

Overview
Cadence is an open source technology that underpins the
architectures of several leading technology organizations.
Most notable of these is Uber who originally created Cadence
and continue to support ongoing open source development.
Cadence drastically simplifies the process of developing and
operating multi-step and long running processes at scale.
Developers use Cadence to write code more easily while
delivering high reliability, scalability, and resilience.

Like any technology, it is vital to have a conceptual
understanding of the benefits to determine if Cadence can
fit your organization. It is challenging to evaluate a solution
without understanding your requirements if you do not know
what questions to ask before a potential implementation. To
help with that, our industry experts have been digging into
what makes Cadence tick and how it is used.

This paper walks you through the basics of Cadence and
key learnings to help you understand how it works and the
benefits it can provide to your organization. We will give a
brief history of Cadence, how workflows work, key features,
and how you can apply Cadence to your data infrastructure.

Copyright ©2022 Instaclustr, All rights reserved.

info@instaclustr.comwww.instaclustr.com @instaclustr 2

Introduction: A Little Bit of Context and History
Cadence is a backend server application and client library designed to simplify
development for the “large number of use cases that span beyond a single request-reply,
require tracking of a complex state, respond to asynchronous events, and communicate
to external unreliable dependencies”.1 Cadence does this by providing a “fault-oblivious
stateful programming model that obscures most of the complexities of building scalable
distributed applications”. Exactly how it does this and how programmers interact with this
model we will explore in the later sections of this paper.

Cadence was initially developed by Uber and open sourced in 2017 under the MIT license.
Uber has publicly confirmed that Cadence is a foundation technology within the company,
being used for over 500 use cases. In addition, Uber has confirmed that they plan to
continue supporting the project through an open community.

In addition to Uber, Cadence is used widely by many leading technology organizations.
Publicly documented use cases include DoorDash, StashAway, and Cisco. DoorDash
states that Cadence “will bring us massive gains in developer productivity due to its ease
of use and abstraction of fussy details.”2

An Illustrative Example

public void manageSubscription(Subscription subscription) {
 activities.sendWelcomeEmail(subscription);

 int billingPeriodNum=0;
 while (billingPeriodNum < subscription.getSubscriptionPeriods()) {
 Workflow.await(subscription.getBillingPeriodDuration(),
 () -> subscriptionCancelled);

 if (subscriptionCancelled) {
 activities.sendEarlyCancellationEmail(subscription);
 break;
 }

 activities.chargeCustomerForBillingPeriod(subscription);
 billingPeriodNum++;
 }

 if (!subscriptionCancelled) {
 activities.sendSubscriptionOverEmail(subscription);
 }
 }

1 “Overview.” Cadence Workflow, cadenceworkflow.io/docs/get-started. Accessed 1 Jan. 2022.
2 Lin, Alan. “Building Reliable Workflows: Cadence as a Fallback for Event-Driven Processing.” Doordash Engineering, 14 Aug. 2020, doordash.
 engineering/2020/08/14/workflows-cadence-event-driven-processing.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
https://cadenceworkflow.io/blog/2021/09/30/long-term-commitment-and-support-for-the-cadence-project-and-its-community/
https://doordash.engineering/2020/08/14/workflows-cadence-event-driven-processing/
https://medium.com/stashaway-engineering/building-your-first-cadence-workflow-e61a0b29785
https://techblog.cisco.com/blog/pke-on-cadence/

info@instaclustr.comwww.instaclustr.com @instaclustr 3

This code is an example of a simple workflow implemented in Cadence. (In Cadence, a
workflow is the logic that defines the logical flow of steps. Workflows then execute actions
to perform the tasks in the workflow.) Anyone with a basic familiarity with reading Java
code can readily understand the business logic and see that the function manages a
subscription for a fixed number of periods, charging the customer each period and dealing
with the case where the subscription is canceled early. However, thanks to the magic
of Cadence, this code will run reliably over periods as long as months or years, through
server restarts and failures. It will also scale to handle managing millions of subscriptions
concurrently. Let’s start peeking behind the scenes to see how the magic works.

The first thing you need to know is that you won’t be calling the method above directly from
your code, instead, it is invoked using something like this:

SubscriptionWorkflow workflow =
workflowClient.newWorkflowStub(SubscriptionWorkflow.class);

workflow.manageSubscription(subscription);

In this example, workflowClient is a Cadence client class that has been instantiated with
a connection to a Cadence cluster. We use that to get a stub matching an interface that
contains the workflow method defined above. That stub is what we then used to invoke the
method. When we invoke the method via the stub, we are asking the Cadence server to
invoke the method. It will then find a registered worker service to run that workflow (there
is some simple code to do that registration that we haven’t shown) and ask that worker to
run the function. As Cadence is now between the code that kicks off the workflow and the
execution of the workflow, it can perform a few essential functions:

■ load balancing across multiple worker servers and easy addition of more workers to the
pool if required (the process just starts up and registers itself with Cadence)

■ reliably queuing workflow requests until a worker is available and throttling of request to
avoid overwhelming workers (very helpful if you need a buffer to allow auto-scaling of
workers to occur to react to a peak load)

■ in the event of worker failures, it automatically restarts the workflow processes on
different worker instances.

Performing all of these functions requires Cadence itself to be highly reliable and scalable,
and so it is itself a distributed, horizontally scalable system with high availability built-
in. Cadence also supports highly available and scalable data stores such as Apache
Cassandra®. Building this reliability and scalability into Cadence allows worker programs to
be simple, single-server applications while operating as part of a highly reliable and scalable
system.

Now looking at workflow methods and how they interact with Cadence, the next key

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 4

concept to look at is activities. You might have noticed in the sample code that there is an
activities variable being used that is not defined in the function scope. activities is
defined in the containing class as

 private final SubscriptionActivities activities =
 Workflow.newActivityStub(SubscriptionActivities.class);

WorkFlow is one of the Cadence client library classes and the newActivityStub
method is very similar to the newWorkflowStub method we used to invoke our workflow in
the section above. It is giving us a stub that matches the SubscriptionActivities interface
that defines sendWelcomeEmail and the other functions called by the main workflow
function (this code is not shown but it is just whatever your business logic needs). Just like
with workflows, using the stub actually asks Cadence to execute the activity rather than
executing it directly. This provides all the same reliability and scalability benefits that we
described for workflows. For activities, it also provides the benefit that Cadence is able to
reliably save the result of activity after it is executed. This is very important when it comes
to restarting a workflow that has failed or been suspended part way through execution.
We’ll explain how restarting a workflow works in the next section.

Restarting Workflows
For this explanation we’ll use close to the simplest Cadence workflow example you could
imagine. It executes one activity to concatenate a string and then sleeps for 10 seconds
(note: there is no actual need to put string concatenation in an activity, it’s a trivial example
to simplify the explanation). Print statements have been added to help track what’s going
on. Here is the core of the code:

public static class GreetingWorkflowImpl implements GreetingWorkflow {

 private final GreetingActivities activities =
 Workflow.newActivityStub(GreetingActivities.class);

 @Override
 public String getGreeting(String name) {
 String greetingActivityResult = “Not set”;
 System.out.println(

 “About to run the composeGreeting activity. Activity result = “ +
 greetingActivityResult);

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 5

The workflow is kicked off with some code like the following:

The printed output that this produces looks like:

Pretty boring! Any programming 101 student could probably trace through the logic in
those methods and guess that that was the output that you would expect to be printed.
The reason that this is boring is that Cadence has used a feature called Sticky Execution
to keep a single instance of the GreetingWorkflowImpl around and largely executed the
code as would be expected if Cadence wasn’t involved at all.

GreetingWorkflow workflow =
 workflowClient.newWorkflowStub(GreetingWorkflow.class);
String greeting = workflow.getGreeting(“World”);
System.out.println(“Workflow returned: “ + greeting);

greetingActivityResult = activities.composeGreeting(“Hello”, name);

 System.out.println(“About to sleep. Activity result = “ +
 greetingActivityResult);
 Workflow.sleep(Duration.ofSeconds(10));

 System.out.println(
 “Finished running workflow method. Activity result = “ +
 greetingActivityResult);
 return greetingActivityResult;
 }
}

static class GreetingActivitiesImpl implements GreetingActivities {
 @Override
 public String composeGreeting(String greeting, String name) {
 System.out.println(“Inside the composeGreeting activity”);
 return greeting + “ “ + name + “!”;
 }
}

About to run the composeGreeting activity. Activity result = Not set
Inside the composeGreeting activity
About to sleep. Activity result = Hello World!
Finished running workflow method. Activity result = Hello World!
Workflow returned: Hello World!

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 6

Sticky Execution is an important performance optimization. However, for this exploratory
example, it is stopping some interesting stuff from happening that will help us understand
how Cadence restarts workflows after failures or long waits. When sticky execution is
turned off (with a small change in the initialization code) the output is different:

It’s clear from this that there is a lot more going on than the previous run. What has
happened is that, as a result of turning off sticky execution, Cadence is discarding the
running GreetingWorkflowImpl object each time the thread of execution leaves the
workflow to run an activity or sleep and then creating a new object after that external
activity is complete and it’s time to execute the next step in the workflow object.

One thing that might be noticed in the output above is that the “Inside the
composeGreetingActivity” message appears only once, implying that the activity method
has only been executed once. This is because, after running an activity, Cadence saves the
output in the workflow history and the next time that same step in the workflow is hit, simply
returns the saved result from the previous execution without executing the actual activity
code. Similarly, when the code is being watched and executed in real-time, there would be
a ten-second pause after the first “about to sleep” but no pause the second time it comes
around.

This saving of activity output to be replayed when workflow logic is re-executed is what
enables Cadence to execute activities in the sequence defined by the logic of the workflow
code while still being able to restart workflow execution whenever needed.

For this, to work, there are a couple of key rules to be aware of:

■ Code within the workflow itself has to be entirely deterministic. To take a trivial example,
you wouldn’t want to use a standard random function as this would return a different
value each time it was executed. More importantly, you shouldn’t call any external
services directly from workflow code that could fail including operations like reading and
writing to files—anything like that should be done in activities.

■ Code within a workflow should not modify a state external to the workflow class or, if

About to run the composeGreeting activity. Activity result = Not set
Inside the composeGreeting activity
About to run the composeGreeting activity. Activity result = Not set
About to sleep. Activity result = Hello World!

About to run the composeGreeting activity. Activity result = Not set
About to sleep. Activity result = Hello World!
Finished running workflow method. Activity result = Hello World!
Workflow returned: Hello World!

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 7

that is unavoidable, must do so in a manner that is idempotent. It is pretty easy to see
from the example above that incrementing an external counter, for example, would result
in different results depending on how Cadence chose to execute the workflow. Again,
activities can be used for this type of requirement.

■ If you want Cadence to retry failed activities, then relevant activity implementations
should be idempotent as well (and have a retry policy specified).

Other Key Features
So far, only the bare fundamentals of Cadence have been covered. In addition to these
fundamentals, Cadence offers many powerful features that are beyond the scope of this
paper to cover in detail. Some key features to be aware of include:

■ Workflow signals: allow external processes to send signals or messages to a running
workflow. Workflows can wait for a specific signal to be received before proceeding.

■ Workflow queries: allow external processes to query state from a running workflow.
■ Child workflows: allows workflows to spawn other workflows. Among other uses, this

is important for managing very long-running workflows with many steps as once a child
workflow is complete there is no need to replay its full history when restarting the parent
workflow.

■ Async activities: these allow workflow execution to continue (and execute more
activities) while a long-running activity completes. The workflow can later wait to confirm
the completion of the activity.

The details of these and many more features can be found in the Cadence documentation.

Applying Cadence in Your Application
Architecture
Hopefully, the explanations above have given you a conceptual understanding of the
function and usefulness of Cadence. However, like any technology, it will be most
successful and valuable when applied to the right problems with the right approach.

Next, you need to ask what indications you have of a business requirement where Cadence
can be a valuable part of the technical solution? In general, your requirement should:

■ Consist of multiple steps. If all you need to do is invoke a single service or even multiple
services where the ordering is not important, then an approach such as putting a
message on an Apache Kafka® topic and implementing Kafka consumers with your
service logic is probably a simpler solution.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 8

■ Have separate external interactions at the start and end of the process (i.e. is
asynchronous from the point of view of the application or user invoking the process). If
all of your steps need to be implemented in a single, synchronous call, then it’s probably
simpler just to implement them directly in your code. While there are use cases where it
is sensible to execute a Cadence workflow synchronously, these are more likely to occur
in a batch process or child workflow execution rather than directly from user interaction
(so the overall process is in effect asynchronous from a user point of view).

■ Need a high-level scale and reliability or have many suitable requirements to
implement. If you only have a single requirement that it is suitable for Cadence then it’s
unlikely to be worth the overhead of learning Cadence unless you have requirements for
high level of scale and reliability. Alternative approaches such as managing your process
state in the database you are already using are likely to be simpler to build and operate.
However, build-your-own approaches are unlikely to achieve Cadence’s ability to scale
to millions of concurrent workflows and tens of thousands of events per second while
delivering very high levels of reliability without substantial effort. In addition, even if
you don’t have high scale requirements, if you have many smaller-scale requirements
that otherwise fit Cadence then it is likely to be worth the learning curve to gain the
developer productivity benefits from the structured approach that Cadence provides.

■ Not require you to maintain workflow definitions in a business-friendly language.
Many workflows or decision engines allow you to directly maintain workflow definitions
in a business-friendly format, even plain English. While it is possible to build execution
engines for these languages on top of Cadence, Cadence does not directly provide the
ability to use such languages to specify workflows. If direct maintenance of workflow
logic by business analysts or business users is a requirement, then Cadence will be, at
best, part of your solution.

Once you’ve determined that Cadence is a fit for your use case, be prepared that, like any
sophisticated new technology, you will need to be deliberate in your planning to maximize
your chances of success. Some key factors that we recommend considering are:

■ Be prepared for a new programming model: Using Cadence does require you to
structure your application logic in a specific manner and adhere to certain rules. While
these rules are not overly restrictive once you are used to them, you need to get familiar
with concepts like what logic needs to be split out into an activity and avoid introducing
non-determinism into your workflow code. While adapting to these concepts may be
an overhead initially, once you are familiar with them, they give you a solid conceptual
framework that can improve your productivity in many circumstances.

■ Start small and grow: it should be clear even from the overview in this paper that
there is quite a lot to learn when approaching your first task with Cadence. As a result,
organizations looking to adopt Cadence are often best off undertaking this learning
through a single project initially and then using that project to seed the learning of other
teams that have a use for Cadence.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 9

■ Be part of the community: Cadence is a true open source project committed to the
community. Whether you are learning to implement your first workflow or dealing with an
issue that only appears at the highest levels of scale, there are people and resources to
assist you in the Cadence community. Don’t be afraid to reach out and ask questions,
and once you start to find your feet, join in and help someone else or contribute back to
the project when you see the opportunity.

■ Don’t forget operations: This article has covered the dev side of things (and barely
scratched the surface of that). Operations is another whole perspective to understand
before successfully running Cadence in production. For Cadence, this includes specific
topics such as sharding and global domains as well as the standard topics you’d expect
for any system such as deployment topology and configuration, sizing, monitoring,
backup and restore, etc. Of course, Instaclustr’s managed platform is designed to take
care of many of these considerations for you, delivering you a fully production-ready
and supported infrastructure in minutes rather than months.

Conclusion
Cadence is proving to be a powerful tool for reducing development and operations effort
for many requirements. Its value and reliability at scale have been proven in several of
the world’s leading technology companies. Developers need to understand Cadence’s
capabilities so they can easily configure, deploy, and run Cadence with ease.

By understanding the benefits outlined in this whitepaper, developers and architects alike
can determine if Cadence is the right solution to enable their applications.

About
Instaclustr
Instaclustr helps organizations deliver applications at scale through its managed platform for open
source technologies such as Apache Cassandra®, Apache Kafka®, Apache Spark™, Redis™,
OpenSearch®, PostgreSQL®, and Cadence®.

Instaclustr combines a complete data infrastructure environment with hands-on technology expertise
to ensure ongoing performance and optimization. By removing the infrastructure complexity, we
enable companies to focus internal development and operational resources on building cutting edge
customer-facing applications at lower cost. Instaclustr customers include some of the largest and
most innovative Fortune 500 companies.

© 2021 Instaclustr Copyright | Apache®, Apache Cassandra®, Apache Kafka®, Apache Spark™, and Apache ZooKeeper™ are trademarks of The Apache Software Foundation. Elasticsearch™ and Kibana™ are trademarks for
Elasticsearch BV. Kubernetes® is a registered trademark of the Linux Foundation. OpenSearch is a registered trademark of Amazon Web Services. Postgres®, PostgreSQL® and the Slonik Logo are trademarks or registered trademarks
of the PostgreSQL Community Association of Canada, and used with their permission. Redis™ is a trademark of Redis Labs Ltd. *Any rights therein are reserved to Redis Labs Ltd. Cadence is a trademark of Uber Technologies, Inc.
Any use by Instaclustr Pty Limited is for referential purposes only and does not indicate any sponsorship, endorsement or affiliation between Redis and Instaclustr Pty Limited. All product and service names used in this website are for
identification purposes only and do not imply endorsement.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
https://www.instaclustr.com/platform/managed-apache-cassandra/
https://www.instaclustr.com/platform/managed-apache-kafka/
https://www.instaclustr.com/platform/managed-apache-spark/
https://www.instaclustr.com/platform/managed-redis/
https://www.instaclustr.com/platform/managed-opensearch/
https://www.instaclustr.com/platform/managed-postgresql/
https://www.instaclustr.com/platform/managed-cadence/

