
White Paper

An Architect’s Guide for Selecting
Scalable, Data-Layer Technologies

Overview
As a solution architect one of our most critical early-stage tasks is
selecting the right foundational data-layer components on which you
will build your application. The data-layer provides the platform on which
you must rely to build in resilience through key factors including scale,
availability, security, and performance.

The technology choices that provide the platform or foundation for
critical business applications will ultimately have a far wider and deeper
reaching impact across the organization than just a specific application
deployment. These choices will also affect everything from hiring
decisions, to how quickly customer demands and business requirements
can be met. Choosing a niche technology can draw dedicated and
excited individuals, whereas, this can also lead to not being able to readily
attract qualified candidates.

Architects and CTOs must be especially considerate in their evaluation
of how a specific technology solution delivers value, and careful of
any added complexity or other drawbacks a solution may bring with
it. Matching the right tool for the job—from the beginning—is a huge
advantage that could help avoid headaches (and costs) down the line.
It is important to note that this is also a continual process that needs to
be considered and managed as strategic imperatives and requirements
change.

In this white paper, we detail the challenges faced while making
technology choices and the basics of selecting the right technology
for your application architecture. We will cover four open source
technologies that all reside at the data-layer: Apache Cassandra®,
Apache Kafka®, Apache Spark™, and Elasticsearch™ and we will
consider both when to, and when not, to use them. We also explore how
and when these technologies can be used together.

Copyright ©2018, 2021, 2022 Instaclustr, All rights reserved.

info@instaclustr.comwww.instaclustr.com @instaclustr 2

Key Challenges Faced When Making
Technology Choices
■	 Hiring
	 Technology choices both influence and are influenced by personnel hires. When

implementing a new technology, decision-makers must choose whether to hire
engineers with specific experience (which can be hard to come by for the newest
solutions), or to hire smart people and build up their skill sets. At the same time,
organizations with established teams will naturally lean toward the technology choices
that fit those engineers’ skills and preferences. Choosing technologies with large
communities and broad exposure among engineers can drastically reduce these hiring
challenges.

■	 Quick Response to Business Requirements and Customer Needs
	 Technology choice, along with how a solution is built and how a team services it, has an

outsized influence on how quickly an organization can respond to the requirements and
demands. The right design and implementation of technology can accelerate teams—
for example, implementing microservices can allow large teams to iterate concurrently.

■	 Managing Technical Debt
	 Technical debt impacts both employee morale and an organization’s ability to respond

to product requirements, thus becoming an important component to address when
selecting scalable technologies. However, it’s possible to consolidate technical debt as
solutions mature—for example, by moving from a homegrown container scheduler to a
solution such as Kubernetes.

■	 Security and Compliance
	 Technology choice has a profound impact on security and compliance, as do business

and customer requirements.

■	 Vendor Management
	 Choosing open source implementations can prevent vendor lock-in and provide

flexibility in future technology decision making. Both proprietary and open source have
their own unique advantages and challenges.

■	 Legacy Challenges
	 In addition to the challenges listed above, organizations older than five years need to

also address legacy concerns. For example, architects at such organizations may be

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 3

responsible for digital transformation and may be responsible for moving their existing
applications from a data center to a cloud environment. Not only do you need to choose
technologies that work in the cloud (and are easy to work with, from a user perspective)
but you also need to ensure the movement of the legacy applications is smooth and
makes digital transformation projects considerably simpler.

How to Evaluate Technology Solutions
As architects and technology leaders making (or influencing teams to make) technology
decisions, it’s imperative to focus on business requirements and the real value the potential
solution will provide—while watching out for buzzwords and the pull of the latest trends that
might not be the best fit for your use case.

Equally important is to ensure that the technology will work as intended and understood,
and to realistically recognize any trade-offs involved in the decision.

■	 What is the impact on the broader organization?
■	 Does adopting the solution make it more difficult for other teams to interoperate with

this particular technology?
■	 Does it increase complexity?

Ultimately, technology choice is not only about discovering new solutions, but knowing
when to say no and stay with something that already works.

Focusing Attention Within the Technology Stack

Wardley Maps
Image source: https://medium.com/@ianwaring/it-trends-for-2017-or-the-many-delusions-of-ian-waring-34e70f2657c8

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
https://blog.gardeviance.org/
ttps://medium.com/@ianwaring/it-trends-for-2017-or-the-many-delusions-of-ian-waring-34e70f2657c8

info@instaclustr.comwww.instaclustr.com @instaclustr 4

The graph shows a high level, generic technology stack with a web server, a CMS, a
database, a CRM that interacts with the database, a compute platform, all the way down
to the racks and servers and power infrastructure. What we see is that most of the time,
the value an organization provides is focused almost entirely on the top layer. There is
not enough consideration and design effort focused on the foundation infrastructure
and data-layer components that are required to deliver the application with fundamental
requirements or security, scale, availability, and performance.

Part of the technologist’s dilemma is choosing solutions that enable an organization
and the application to succeed, while the organization is focused on the features of the
application or the very top of the value chain. As an organization grows the inefficiencies in
adopting off-the-shelf components start to magnify. Building a foundational infrastructure
and data-layer that delivers the key characteristics on which applications can be built is the
way large enterprises can focus technology choices on key areas where the most value
may be derived for the business.

Consider Technology Choice Trade-Offs
Even where a technology change provides more value than it costs, there are trade-offs—
for example, there may still be higher value initiatives that those engineers could be working
on. Each technology choice, new services, and new line of code is a tradeoff in itself.

Can the organization support this? Is something that already exists is “near enough and
good enough” meaning, does it help someway to solve the problem? Technology decision-
makers must have the broader business awareness to make near enough/good enough
solution choices when it’s known that business requirements will change in the future. For
example, a high-potential service may seem to need scalable databases, but if the team is
mostly experienced in MySQL, that near enough/good enough choice is the right decision
for the time being, as you get started and then build later as you scale. It’s critical to
recognize the opportunity cost, and the reality of who is responsible for running a solution
in production.

Be Mindful of Complexity
As an organization grows and adopts more technologies, complexity follows a specific
curve.

Initially, adopting technologies to solve particular needs reduces inefficiencies. This
happens as organizations benefit from a greater range of tools that are better suited to
their tasks. However, adopting more technologies increases the mental overhead on the
teams who run (and develop for) these solutions.

Complexity can be tricky to manage, especially within microservices environments
where independent teams generally have 100% ownership of both the development and

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 5

operational capabilities of those services. One strategy that works well is a “blessed tool
kit” approach, where a central IT organization promotes certain technologies and offers
broader support and incentives for teams that adopt those tools. This can help reduce the
rate of technology adoption, while ensuring that independent teams can still choose the
right tool for the right job.

Leveraging Instaclustr Managed Platform
Our integrated managed platform includes open source technologies such as Apache
Cassandra, Apache Kafka, Apache Spark, and Elasticsearch. These data-centric,highly
available and highly scalable technologies work well together and solve a common set of
problems across a range of use cases and industry specific requirements.

Instaclustr provides these technologies in a way that offers flexibility in any environment
– whether it’s cloud, multi-cloud, hybrid or on-prem. All this as a pure-play open source
option with no vendor lock-in. These data technologies are also well-suited to helping
organizations meet customer SLAs and similar obligations.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 6

Understanding Open Source Date Layer
Technologies
Apache Cassandra®
Apache Cassandra is a highly available, highly scalable, NoSQL data store, which originally
came out of Facebook (in 2007) and leverages a Dynamo architecture with a bigtable-
style data model. Dynamo architecture allows you to scale linearly, with each added node
owning a proportionally smaller portion of the total address space. It uses a leaderless
architecture, such that any node can serve any request. Cassandra also offers tuneable
consistency for strong, weak, and guaranteed consistency either globally, locally, or across
a subset of nodes. These properties make Apache Cassandra an excellent building block
for any architecture that has significant availability requirements. Cassandra also supports
higher-order concepts like lightweight transactions, batch operations, counters, indexes,
materialized views, and offers support for JSON and collections.

When Should I Use Apache Cassandra?
As a general-purpose transactional database, Cassandra’s strengths are in providing
scalability and availability. Cassandra is a strong option for organizations requiring
availability of 99.9% or more. It’s also a dependable choice from a data redundancy and
availability perspective, capable of replicating data across different data centers and
environments (while offering relatively seamless data portability). Additionally, Cassandra
is an apt fit for meeting the scalability needs of enterprises with environments facing
increasing workloads, or those looking to grow services flexibly as load increases as you
can scale up and down from 3 to 100 nodes in minutes.

When should I NOT use Apache Cassandra?
Cassandra probably isn’t the best option for organizations rapidly iterating on greenfield
projects—especially so for those with no prior experience with that particular problem
domain. Cassandra is also not as suited for pure analytics storage or data warehousing use
cases. While Cassandra does have Spark connectors and Tableau and Hadoop plugins
(and allows operations such as full table scans), it’s not going to be as fast as other options.
Cassandra also doesn’t lend itself to translytical or real-time analytics (e.g. end user ad-
hoc or custom queries), as the necessity to implement query code application-side that
can add a lot of complexity and is more tricky. Cassandra also doesn’t provide most ACID
requirements, but you will find that most use cases don’t have a strict requirement around
ACID!

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 7

Apache Kafka®

Apache Kafka is a highly scalable, highly available streaming platform, and message bus
that originally emerged from LinkedIn’s technical team. Kafka is effectively a distributed
log: as messages come in, they’re appended to the head of the queue, where a number of
readers (consumers) consume them based on an offset.

Kafka is particularly efficient under the hood, and is powerful for building streaming
applications and event and message buses. The solution can be configured to be either
persistent or in-memory. Kafka can also deliver high performance from a small cluster
for example six nodes can handle millions of messages per second. These properties
make Kafka an excellent building block for any architecture with significant availability and
throughput requirements. Kafka supports higher-order concepts like stream processing,
SQL on top of streams, and connectors for other data services, event sources, or syncs.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 8

Kafka’s primary message model is a topic-based system, in which messages can be
published to specific topics, and consumers with queues registered for those topics will
receive those messages.

When Should I Use Apache Kafka?
As a powerful general-purpose message bus, Kafka offers a number of strong use cases.
It’s excellent for use with service-oriented architecture/microservices. Kafka can be used
as a powerful work queue, coordinating separate work paths that compute power can
listen on and wait for. The platform is great for passing metrics through, and using its
stream processing capabilities for roll-ups, aggregations, and anomaly detection. Kafka is
also effective for event sourcing, reconciling data across different microservices, and as
an external commit log for other distributed systems. Kafka’s general-purpose streaming
platform offers additional interesting use cases as well, including log aggregation, metrics,
fraud and anomaly detection, data masking and filtering, and data enrichment.

When Should I NOT Use Apache Kafka?
Kafka is tricky to be used as a source-of-record or a database as it requires a fairly large
shift in how you work with your data; it is generally just easier to use a true database
instead.

In general, Kafka also shouldn’t be used for in-order processing across an entire topic as
it’s not supported out of the box and requires significant additional effort to support this
use case. Nor should it be put to work with lossy data streams (such as real-time audio or
video), where the goal is to get packets of data to the end source as quickly as possible.
Instead, use a solution more purpose-built for those data streams.

Apache Spark™
Apache Spark is a general-purpose cluster computing framework that is ideal for working
with large data volumes. Spark breaks up data into segments or splits and then runs
computation on them—with individual workers doing all they can until they need data from
other workers. Spark is highly scalable, and remarkably resilient when it comes to protecting
against data loss and delivering availability.

Spark supports many different models, enabling functions like map/reduce, SQL, batch
processing or streaming, graph processing, and machine learning capabilities. Spark also
supports different environments and schedulers like Mesosphere and Kubernetes.

When Should I Use Apache Spark?
Spark is useful for large scale analytics—and especially analytics involving multiple sources
of data. ETL is another primary use case. Spark is great for moving data from one system to

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 9

another, whether it’s on a constant basis while populating a data warehouse or a data lake from
transactional data stores, or a one-off use case such as migrating from one database or one
system to another. Spark is also a solid choice for building ML pipelines on top of existing data,
high latency streaming, and interactive, ad-hoc, or exploratory analysis. Additionally, Spark can be
useful for meeting compliance needs—for example, by providing data masking, data filtering, and
compliance audits of large data sets.

When Should I NOT Use Apache Spark?
Spark is generally not appropriate for real-time or low latency processing; other technologies, like
Apache Kafka, offer better end-to-end latency (this applies to real-time stream processing as well).
Spark also tends to be overkill for small or single datasets. And, while there are data warehousing
and data lake products built around Apache Spark, it’s better to use something higher level.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 10

Elasticsearch™
Elasticsearch is a full-text search engine with a great HTTP web interface. It’s generally
used to provide scalable linear search in near real-time, supports multi tenancy, and offers
strong drop-in search replacement. Elasticsearch is distributed, which means that indices
can be divided into shards and each shard can have zero or more replicas. Each node
hosts one or more shards, and acts as a coordinator to delegate operations to the correct
shard(s).

When Should I Use Elasticsearch?
Elasticsearch is a particularly strong fit for use cases that include full-text search,
geographic search, logging and log analysis, scraping and combining public data, event
data and metrics (at a small volume), and visualizations.

When Should I NOT Use Elasticsearch?
Elasticsearch is generally not appropriate for use as a database or source-of-record, for
use with relational data, or for meeting ACID requirements.

How These Scalable Technologies
Complement Each Other
Apache Cassandra, Apache Kafka, Apache Spark, and Elasticsearch provide a set of
common attributes and complementary capabilities. When leveraged together, these
technologies can be used to build applications that are highly scalable, resilient, portable,
and free from license fees and vendor lock-in. These technologies in their open source
format are tried and tested, super resilient and suitable for enterprise-grade and mission
critical deployments.

Lambda Architecture
There are various ways in which these technologies can be deployed together, for example
the Lambda architecture. The Lambda architecture splits up a task/responsibility on how it
works with data. Designed to handle massive quantities of data by taking advantage of both
batch and stream-processing methods, it attempts to balance latency, throughput and
fault-tolerance by using batch processing to provide a comprehensive and accurate view
of batch data while using real-time stream processing to provide views of the online data.
The architecture comprises three distinct layers: speed layer, batch layer, and serving layer.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 11

While the batch layer processes the large volume of data from the master dataset, the
speed layer provides a real time view of the datasets and the output of both the layers are
saved on the serving layer which responds to ad-hoc queries by building a view from the
processed data.

Microservices Architecture
Another great example of the way that these open source scaling technologies are
deployed is within a Microservices environment.

Within this environment you can have a number of different services. For example an
e-commerce platform may have a cart service, user retention service, product service
or user service. Each of these services has a defined set of responsibilities and rules or
protocols for interacting with one another.

(Instaclustr-managed technologies providing Lambda architecture)

(Instaclustr-managed technologies providing Microservices)

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 12

In this type of deployment, shared data is one of the more complex areas that needs to
be dealt with. A solution to this complexity is understanding the concepts of an event
flow, Apache Kafka provides the fundamentals for this type of architecture. Microservices
are responsible for generating events, these events can be published to a topic that any
number of consumers can potentially consume from. Different services can subscribe to
updates from the message bus as it pushes from the existing service. This is often called
event sourcing.

Extract, Transform, Load (ETL) Architecture
The third use case would be a traditional extract, transform, load (ETL) architecture. An
ETL architecture data is copied from one or more sources into a destination system which
represents the data differently from that provided by the source or sources of the data.
The deployment of Apache Spark is a great example of the extraction and transformation,
pulling data from existing data stores. You can also use Spark as an ETL mechanism for
different Microservices.

Technology choice is a tradeoff between effort and value. It is about enabling value in what you are
building, translating to looking at not just at the technology itself, but how an organization adopts it.

Relying on Instaclustr’s platform of managed services can accelerate your application’s time to
market—while reducing the risk of adopting new technologies. Instaclustr’s commitment to fully
open source solutions further removes risk by ensuring portability and freedom from vendor lock-
in. Instaclustr’s distributed technologies and support mean that organizations can realize increased
availability, without increasing complexity for internal ops teams.

(Instaclustr-managed technologies providing ETL)

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 13

About
Instaclustr

© 2021 Instaclustr Copyright | Apache®, Apache Cassandra®, Apache Kafka®, Apache Spark™, and Apache ZooKeeper™ are trademarks of The Apache Software Foundation. Elasticsearch™ and Kibana™ are trademarks for
Elasticsearch BV. Kubernetes® is a registered trademark of the Linux Foundation. OpenSearch is a registered trademark of Amazon Web Services. Postgres®, PostgreSQL® and the Slonik Logo are trademarks or registered trademarks
of the PostgreSQL Community Association of Canada, and used with their permission. Redis™ is a trademark of Redis Labs Ltd. *Any rights therein are reserved to Redis Labs Ltd. Cadence is a trademark of Uber Technologies, Inc.
Any use by Instaclustr Pty Limited is for referential purposes only and does not indicate any sponsorship, endorsement or affiliation between Redis and Instaclustr Pty Limited. All product and service names used in this website are for
identification purposes only and do not imply endorsement.

Instaclustr helps organizations deliver applications at scale through its managed platform for open
source technologies such as Apache Cassandra®, Apache Kafka®, Apache Spark™, Redis™,
OpenSearch®, PostgreSQL®, and Cadence.

Instaclustr combines a complete data infrastructure environment with hands-on technology expertise
to ensure ongoing performance and optimization. By removing the infrastructure complexity, we
enable companies to focus internal development and operational resources on building cutting edge
customer-facing applications at lower cost. Instaclustr customers include some of the largest and
most innovative Fortune 500 companies.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
https://www.instaclustr.com/platform/managed-apache-cassandra/
https://www.instaclustr.com/platform/managed-apache-kafka/
https://www.instaclustr.com/platform/managed-apache-spark/
https://www.instaclustr.com/platform/managed-redis/
https://www.instaclustr.com/platform/managed-opensearch/
https://www.instaclustr.com/platform/managed-postgresql/
https://www.instaclustr.com/platform/managed-cadence/

