
White Paper

An architect’s guide
FOR SELECTING SCALABLE,
DATA-LAYER TECHNOLOGIES

White Paper I 2An architects guide for selecting scalable data layer technologies

Table of contents
03 Overview

04 6 key challenges when making technology choices

05 How to evaluate technology solutions

08 Leveraging the instaclustr managed platform

08 Understanding open source data layer technologies

13 How these scalable technologies complement each other

16 Final thoughts

White Paper I 3An architects guide for selecting scalable data layer technologies

OVERVIEW
As a solution architect, one of our most critical early-stage tasks
is selecting the right foundational data-layer components to build
applications. Key factors you need to consider for the long-term viability
of your applications include Scalability, Availability, Security, and
Performance.

Architects and CTOs must be especially considerate in their evaluation
of how a specific technology solution delivers value, and careful of any
added complexity it may bring. Matching the right tool for the job from the
outset is a huge advantage that could help avoid headaches (and costs)
down the line.

In this white paper, we will explore 4 open source technologies that all
reside at the data layer:

• Apache Cassandra®
• Apache Kafka®
• Apache Spark™
• OpenSearch®

We will detail the challenges faced when making these technology
choices and how to select the best technology for your application
architecture, including:

• When to choose these technologies
• When to avoid them
• How and why you would use these technologies together

White Paper I 4An architects guide for selecting scalable data layer technologies

6 Key challenges WHEN MAKING
TECHNOLOGY CHOICES
1. Hiring
When implementing a new technology, decision-makers generally have
two choices: hire engineers with specific experience (which can be hard
to come by for the newest solutions) or to build upon the skillset of their
established team (which can take considerable time to gain the required
knowledge); organizations often lean towards the latter option.

However, choosing technologies with large communities and broad
exposure among engineers can drastically reduce these hiring challenges
because the knowledge and expertise are readily available.

2. Quick response to business requirements and
customer needs

Technology choice, along with how a solution is built and how a team
services it, has an outsized influence on how quickly an organization
can respond to the requirements and demands. The right design and
implementation of technology will allow teams to act with agility.

3. Managing technical debt
Technical debt impacts both employee morale and an organization’s
ability to respond to product requirements, thus becoming an important
component to address when selecting scalable technologies. However,
it’s possible to consolidate technical debt as solutions mature, like moving
from a homegrown container scheduler to a solution such as Kubernetes.

4. Security and compliance
Technology choice has a profound impact on security and compliance, as
do business and customer requirements. For example, there are certain
regulations that must be taken into consideration such as GDPR, SOC
2, ISO and PCI-compliance depending on the technology in question
and the requirements of the application. Additionally, the capability
to execute CVE evaluations, 24x7 alerting and incident response are
security considerations that need to be taken into account when choosing
technology. Other security and compliance capabilities may include
comprehensive network security features, including encryption, access
controls and VPC peering.

White Paper I 5An architects guide for selecting scalable data layer technologies

5. Vendor management
Choosing open source implementations can prevent vendor lock-in and
provide flexibility in future technology decision making. Both proprietary
and open source have their own unique advantages and challenges.

6. Legacy challenges
Organizations older than 5 years will need to address legacy concerns.
For example, architects at such organizations may be responsible for
digital transformation and moving their existing applications from a data
center to a cloud environment.

Not only do you need to choose technologies that work in the cloud
(and are easy to work with, from a user perspective) but you also need
to ensure the movement of the legacy applications is smooth and makes
digital transformation projects considerably simpler.

How to evaluate
TECHNOLOGY SOLUTIONS
Architects and technology leaders either making decision themselves
or influencing the teams that ultimately will, it’s important to focus on
business requirements and the real value the potential solution will
provide.

Equally important is to ensure that the technology will work as intended
and understood, and to realistically recognize any trade-offs involved in
the decision.
• What is the impact on the broader organization?
• Does adopting the solution make it more difficult for other teams to

interoperate with this particular technology?
• Does it increase complexity?

Ultimately, technology choice is not only about discovering new solutions,
but knowing when to say no and staying with something that already
works.

White Paper I 6An architects guide for selecting scalable data layer technologies

Focusing attention within the technology stack
Today, many organizations use task-driven automation to scale up or
down cloud resources based on prescheduled and/or repetitive events.
For example, to support a daily 8:00 a.m. spike in usage, a task is set
to automatically scale up a predefined set of resources to support the
workload’s needs and scale them down at 9:00 a.m. This is not new
technology. However, it is a pre-determined, fixed process that is not
suitable for the complexity of today’s cloud infrastructure and the dynamic
needs of application workloads.

What’s required is an agile solution, embedded within cloud operational
processes, that can proactively — and automatically — identify and
deploy the most efficient resources for specific workloads (both
containerized and non-containerized) consistently at precisely the right
time and at the right cost.

Consider technology choice trade-offs
Even where a technology change provides more value than it costs, there
are trade-offs— for example, there may still be higher value initiatives
that those engineers could be working on. Each technology choice, new
services, and new line of code is a tradeoff in itself.

Can the organization support this? Is something that already exists “near
enough and good enough”, meaning does it help someway to solve the
problem?

Technology decision-makers must have the broader business awareness
to make near enough/good enough solution choices knowing that
business requirements will change in the future.

A high-potential service may seem to need scalable databases, but if
the team is mostly experienced in PostgreSQL, that near enough/good
enough choice is the right decision for the time being, as you get started
and then build later as you scale. It’s critical to recognize the opportunity
cost, and the reality of who is responsible for running a solution in
production.

White Paper I 7An architects guide for selecting scalable data layer technologies

Be mindful of complexity
As an organization grows and adopts more technologies, complexity follows
a specific curve. Initially, adopting technologies to solve particular needs
reduces inefficiencies. This happens as organizations benefit from a greater
range of tools that are better suited to their tasks. However, adopting more
technologies increases the mental overhead on the teams who run (and
develop) these solutions.

Complexity can be tricky to manage, especially within microservices
environments where independent teams generally have 100% ownership of
both the development and operational capabilities of those services. One
strategy that works well is a “blessed tool kit” approach, where a central IT
organization promotes certain technologies and offers broader support and
incentives for teams that adopt those tools. This can help reduce the rate of
technology adoption, while ensuring that independent teams can still choose
the right tool for the right job.

C
om

pl
ex

ity
 a

nd
 c

os
t

Number of technologies

The more technologies you have, the more complex—and costly—they will
eventually become to manage

White Paper I 8An architects guide for selecting scalable data layer technologies

Leveraging the Instaclustr
MANAGED PLATFORM
Our integrated managed platform includes 100% open source
technologies like Apache Cassandra, Apache Kafka, Apache Spark, and
OpenSearch. These data-centric, highly available and highly scalable
technologies work well together and solve a common set of problems
across a range of use cases and industry specific requirements—all with
no vendor lock-in.

These technologies are well-suited to helping organizations meet
customer SLAs and similar obligations in any environment: single- or
multi-cloud, hybrid and on-prem.

UNDERSTANDING OPEN SOURCE
Data layer technologies
Apache Cassandra
Apache Cassandra is a highly available, highly scalable, NoSQL data store
that leverages a Dynamo architecture with a bigtable-style data model.
Dynamo architecture allows you to scale linearly, with each added node
owning a proportionally smaller portion of the total address space.

Cassandra uses a leaderless architecture, such that any node can serve
any request. It also offers tuneable consistency for strong, weak, and
guaranteed consistency either globally, locally, or across a subset of
nodes.

These properties make Apache Cassandra an excellent building block for
any architecture that has significant availability requirements. Cassandra
also supports higher-order concepts like lightweight transactions, batch
operations, counters, indexes, materialized views, and offers support for
JSON and collections.

Kafka Cluster Consumer group

Kafka ecosystem

Push msg Pull msg

Get Kafka
broker ID

Update
offset

Producer 1 Consumer 1Producer 1

Producer 2 Consumer 2Producer 2

Producer 3 Consumer 3Producer 3

White Paper I 9An architects guide for selecting scalable data layer technologies

When should I use Apache Cassandra?

As a general-purpose transactional database, Cassandra’s strengths are in
providing scalability and availability. It is a strong option when you:

• Require availability of 99.9% or more
• Need to replicate data across different data centers and environments
• Must scale up or down from 3 to 100 nodes in minutes

When should I NOT use Apache Cassandra?

Cassandra probably isn’t the best option for organizations rapidly iterating on
greenfield projects—especially so for those with no prior experience with that
problem domain.

Why?

• It’s not suited for pure analytics storage or data warehousing
• While it does have Spark connectors and Tableau plugins, it won’t be fast
• There are no translytical or real-time analytics
• Cassandra doesn’t provide most ACID requirements

Apache Kafka
Apache Kafka is a highly scalable, highly available streaming platform that is
effectively a distributed log: as messages come in, they’re appended to the
head of the queue, where many readers (consumers) consume them based
on an offset.

White Paper I 10An architects guide for selecting scalable data layer technologies

Kafka is particularly efficient under the hood and is powerful for building
streaming applications and event and message buses. The solution can
be configured to be either persistent or in-memory.

Kafka can also deliver high performance from a small cluster; for
example 6 nodes can handle millions of messages per second. These
properties make Kafka an excellent building block for any architecture
with significant availability and throughput requirements. Kafka supports
higher-order concepts like stream processing, SQL on top of streams, and
connectors for other data services, event sources, or syncs.

Kafka’s primary message model is a topic-based system, in which
messages can be published to specific topics, and consumers with
queues registered for those topics will receive those messages.

When should I use Apache Kafka?

As a powerful general-purpose message bus, Kafka offers a number of
strong use cases:

• Service-orientated architecture and microservices
• A powerful work queue
• Passing metrics through and using stream processing capabilities for

roll-ups, aggregations, and anomaly detection
• Event sourcing
• Reconciling data across different microservices
• An external commit log for other distributed systems

Kafka’s general-purpose streaming platform offers additional use cases,
including log aggregation, metrics, fraud and anomaly detection, data
masking and filtering, and data enrichment.

Producers

Consumer A
(Offset=9)

Consumer B
(Offset=9)

Writes

Reads

0 1 2 3 4 5 6 7 8 9 1
0
1
1
1
2

White Paper I 11An architects guide for selecting scalable data layer technologies

When should I NOT use Apache Kafka?

• Kafka is tricky when used as a source-of-record or a database as
it requires a fairly large shift in how you work with your data; it is
generally easier to use a true database instead.

• In general, Kafka also shouldn’t be used for in-order processing across
an entire topic as this requires significant additional effort.

Apache Spark
Apache Spark is a general-purpose cluster computing framework that
is ideal for working with large data volumes. Spark breaks up data into
segments or splits and then runs computation on them—with individual
workers doing all they can until they need data from other workers. Spark
is highly scalable, and remarkably resilient when it comes to protecting
against data loss and delivering availability.

Spark supports many different models, enabling functions like map/
reduce, SQL, batch processing or streaming, graph processing, and
machine learning capabilities. Spark also supports different environments
and schedulers like Kubernetes.

When should I use Apache Spark?

Spark is useful for large scale analytics—and especially analytics
involving multiple sources of data:

• ETL (Extract, Transform, Load) use cases
• Moving data from one system to another (whether on a constant basis

or one-off)
• Building ML pipelines on top of existing data, high latency streaming

and exploratory analysis
• Meeting compliance needs, such as masking data, data filtering and

compliance audits

Driver program

Worker node

Worker node

Spark
SQL

Spark
Streaming

Mlib
(Machine
learning)

GraphX
(Graph)

Spark conect

Executor

Executor

Task

Task

Task

Task

Cache

Cache

Cluster manager

Apache Spark

White Paper I 12An architects guide for selecting scalable data layer technologies

When should I NOT use Apache Spark?

Spark is generally not appropriate for real-time or low latency processing;
other technologies, like Apache Kafka, offer better end-to-end latency
(this applies to real-time stream processing as well). Spark also tends
to be overkill for small or single datasets. And, while there are data
warehousing and data lake products built around Apache Spark, it’s better
to use something higher level.

OpenSearch
OpenSearch is a full-text search engine with a great web interface. It’s
generally used to provide scalable linear search in near real-time and
offers strong drop-in search replacement. OpenSearch is distributed,
which means that indices can be divided into shards and each shard can
have zero or more replicas. Each node hosts one or more shards and acts
as a coordinator to delegate operations to the correct shard(s).

White Paper I 13An architects guide for selecting scalable data layer technologies

When should I use OpenSearch?

OpenSearch is a particularly strong fit for use cases that include full-
text search, geographic search, logging and log analysis, scraping and
combining public data, event data and metrics (at a small volume), and
visualizations.

When should I NOT use OpenSearch?

OpenSearch is generally not appropriate for use as a database or source-
of-record, for use with relational data, or for meeting ACID requirements.

How these scalable technologies
COMPLEMENT EACH OTHER
Apache Cassandra, Apache Kafka, Apache Spark, and OpenSearch
provide a set of common attributes and complementary capabilities.
When leveraged together, these technologies can be used to build
applications that are highly scalable, resilient, portable, and free from
license fees and vendor lock-in. Entirely open source, they are tried and
tested, super resilient and suitable for enterprise-grade and mission
critical deployments.

There are numerous ways these technologies can work together, but
Lambda, Microservices and Extract, Transform, Load (ETL) architectures
are most prominently used.

Lambda architecture
Lambda architecture splits up a task/responsibility on how it works with
data. Designed to handle massive quantities of data by taking advantage
of both batch and stream processing methods, it attempts to balance
latency, throughput and fault-tolerance by using batch processing to
provide a comprehensive and accurate view of batch data while using
real-time stream processing to provide views of the online data.

The architecture comprises 3 distinct layers: speed layer, batch layer, and
serving layer.

Cart
service

Retention
service

Product
service

User
service

Kafka

Cassandra Cassandra OpenSearch ValkeyPostgreSQL Cassandra

Master dataset

Batch layer Serving layer

Serving layer

Batch view

Real-time view Real-time view

Batch view

2 3

4 5
New
data

1
Data

source/
message

queue
(eg:

Apache
Kafka)

Stream
processing
technology:
Spark, Kafka

Connect, Flink,
Kafka Streams

Queries

Responses

Query

Query
Cassandra DB,
PostgreSQL,

or ClickHouse

White Paper I 14An architects guide for selecting scalable data layer technologies

While the batch layer processes the large volume of data from the master
dataset, the speed layer provides a real time view of the datasets and the
output of both the layers are saved on the serving layer which responds
to ad-hoc queries by building a view from the processed data:

Microservices architecture
Within this environment you can have a number of different services. For
example, an e-commerce platform may have a cart service, user retention
service, product service or user service. Each of these services has a
defined set of responsibilities and rules or protocols for interacting with
one another.

In this type of deployment, shared data is one of the more complex areas
that needs to be dealt with. A solution to this complexity is understanding
the concepts of an event flow, Apache Kafka provides the fundamentals
for this type of architecture.

(Instaclustr-managed technologies providing Lambda architecture)

(Instaclustr-managed technologies providing Microservices)

Cart
service

Retention
service

Product
service

User
service

Spark

Cassandra Cassandra OpenSearch ValkeyPostgreSQL Cassandra

White Paper I 15An architects guide for selecting scalable data layer technologies

Microservices are responsible for generating events. These events can
be published to a topic that any number of consumers can potentially
consume. Different services can subscribe to updates from the message
bus as it pushes from the existing service. This is often called event
sourcing.

Extract, Transform, Load (ETL) architecture
In an ETL architecture, data is copied from one or more sources into
a destination system which represents the data differently from that
provided by the source or sources. The deployment of Apache Spark is
a great example of the extraction and transformation, pulling data from
existing data stores. You can also use Spark as an ETL mechanism for
different Microservices.

Technology choice is a tradeoff between effort and value. It is about
enabling value in what you are building, translating to looking at not just at
the technology itself, but how an organization adopts it.

(Instaclustr-managed technologies providing ETL)

NetApp® Instaclustr specializes in open source technologies for enterprises. Our managed platform streamlines data infrastructure
management, backed by experts who ensure ongoing performance, scalability, and optimization. This enables companies to focus
on building cutting edge applications at lower costs.

© 2025 NetApp, Inc. All rights reserved. NETAPP, the
NETAPP logo, and the marks listed at www.netapp.com/TM
are trademarks of NetApp, Inc. Other company and product
names may be trademarks of their respective owners.

info@instaclustr.com | www.instaclustr.com

3-12feb25

 FINAL Thoughts
Why open source is the go-to choice for scalable,
data- layer technologies
Adopting Instaclustr’s platform of managed services can accelerate
your application’s time to market. Instaclustr’s commitment to fully open
source solutions like Apache Cassandra, Apache Kafka, Apache Spark,
OpenSearch and more, further removes risk by ensuring portability and
freedom from vendor lock- in.

Instaclustr’s distributed technologies and support mean that organizations
can realize increased availability, without increasing complexity for
internal ops teams.

Reach out to our open
source experts and let
us guide you through the
complexities of modern tech,
enabling your organization
to focus on innovation
and delivering exceptional
customer experiences.

http://www.netapp.com/TM
mailto:info%40instaclustr.com?subject=
https://www.instaclustr.com/
https://www.instaclustr.com/platform/
https://www.instaclustr.com/contact-us/

