
White Paper

How to Maximize the Availablity
of Apache Cassandra®

Overview
This white paper provides a range of strategies for ensuring that
your Apache Cassandra® deployment is highly tuned to maximize
application uptime and continued high availability.

This paper covers the basics of Cassandra high-availability and
then provides a defense in-depth approach by detailing a range of
strategies that can be employed at the architecture, infrastructure,
and application layers.

Copyright ©2017, 2021, 2022 Instaclustr, All rights reserved.

info@instaclustr.comwww.instaclustr.com @instaclustr 2

Basics of Cassandra High-Availability

We’ll begin with what veteran Cassandra users will recognize as already-ingrained
strategies, but these tips bear mentioning because too often we see that devs aren’t
following them.

These also apply to any production Cassandra cluster, and can prevent single-instance
hardware failures or process crashes on an individual machine from leading to widespread
outages.

Tip 1: Your cluster should include three nodes (two at absolute
 minimum)

Hardware failures and interruptions in Cassandra service on a single node can (and will)
happen. When they do, a redundant secondary node is necessary to ensure that service
will continue seamlessly during these events. Three nodes are required to enable writes
with strong consistency, making this the optimal strategy.

Tip 2: Have the right replication factor and strategy in place

Three nodes can’t effectively safeguard uptime if the cluster’s replication factor is set to
one (meaning the cluster only includes a single replica). A replication factor of three is
correct in most cases. It’s also smart to use NetworkTopologyStrategy for the replication
strategy. This strategy allows for easy expansion to other racks and data centers as
needed. While not every organization will see an immediate need for those capabilities,
NetworkTopologyStrategy offers a great deal of flexibility going forward – with zero
downside to being prepared from the beginning.

Tip 3: Diversify the physical locations of data with Cassandra
	 	 rack	configuration

Use Cassandra rack configuration to make sure that a disaster at one of the locations
where your data replicas are stored will have absolutely no effect on the others. AWS
assists with this by allowing users to map racks to geographically distinct availability zones
(while other cloud providers offer similar solutions). If managing your own data center racks,
make sure to physically separate replicas by practicing this don’t-put-all-your-eggs-in-one-
basket approach.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 3

Tip 4: Understand and choose a consistency level that tolerates
 faults

If the consistency level is unrealistic—say if it’s set to ALL—a node failure can derail
availability even if healthy replicas are on hand. Consistency level is most often set to
QUORUM or LOCAL_QUORUM, allowing operation with strong consistency despite a node failure.
However, it’s important to understand the relationship between QUORUM and replication factor,
for example, QUORUM with a replication factor of two will require two functioning nodes. Make sure
this is set up logically so that the loss of a single node won’t result in costly downtime.

Architectural Strategies for Cassandra
High-Availability
Now that we’ve covered the basics, it’s important to take a look at your Cassandra
deployment at the architectural level, and further maximize availability by preventing failures
in the physical infrastructure.

■ Utilize Multi-Data Center Support
 If a complete cloud provider region or on-premise physical data center experiences a failure,

basic preparations can no longer safeguard availability. To address this, use Cassandra’s native
multi-datacenter support to maintain a remote hot standby of the cluster in case the need
arises.

■ Span Multiple Cloud Providers
 As we well know from recent events, cloud providers themselves can suffer from availability

issues. To prepare for this reality, a Cassandra cluster can be designed to span both regions
and providers, or to have nodes both on-premise and in the cloud, maintaining availability even
when providers cannot.

■ Use Replication Factor 5
 While replication factor 3 means you can survive the loss of a single replica, it then means being

vulnerable anytime a single replica is down. Unfortunately, there are common situations where
routine maintenance could require a node to be down for hours or days, leaving the cluster
vulnerable. Building architecture capable of running replication factor 5, and using QUORUM
as the consistency level, maintains availability even if periods of maintenance and single node
failures coincide.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 4

Infrastructure Strategies for Cassandra
High-Availability
Even with a strong architecture in place, infrastructural issues can hamper a Cassandra
cluster’s availability. Namely, the cluster can be overloaded by spikes in client load, or by
events such as an increase in tombstones or a repair operation gone haywire. Making the
right infrastructural preparations can prevent these events from causing downtime.

■ Keep Some Capacity in Reserve
 By keeping disk usage under 70% during periods of normal load, as well as CPU

utilization at around 60-70%, sudden load increases shouldn’t lead to instability. Going
above these thresholds is possible, but probably only advisable if you have an expert
understanding of your cluster and trust that you can safely push your luck.

■ Use More, Smaller Nodes
 Smaller nodes offer advantages in maintaining availability. Maintenance operations

performed on smaller nodes will finish faster, reducing the risks present while they are
occupied. At the same time, the total processing capacity of the cluster takes less of a
hit when a single small node fails as opposed to a larger one. Compare running a cluster
of 6x m4.xl AWS instances versus a cluster of 3 x m4.2xls—the cluster of smaller nodes
offers the same or greater processing power for the same value, while achieving an
infrastructure where a single node failure has only half the impact.

 Be careful, however: there is such a thing as going too small, causing the base OS and
similar overhead to become too limiting, while increasing the need to rely on automated
provisioning and management.

■ Be Vigilant in Monitoring the Cluster
 The truth is that catastrophic issues rarely show up out of the blue. Most often there’s a

history of danger signs before the failure: possibly an increase in pending compactions,
warnings of tombstones and large partitions, spikes in latency, or mutations getting
dropped. Observe these issues and address them as they come; a small fix in time will
save you from a large failure.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 5

Application-Level Strategies for Cassandra
High-Availability
Lastly, taking some precautions at the application level can be effective in reducing
Cassandra issues.

Optimize	Your	Cassandra	Driver	Configuration
Cassandra drivers have features to make your cluster much more resilient, if you take the
time to configure them for your requirements. A few examples: drivers can route queries
away from slow nodes, or implement automatic fall back to lower consistency levels as
needed to avert issues.

Set up Retry Strategies That Know When to Quit
Persistence is a virtue, and it’s often beneficial for applications to retry failed queries.
However, without a strategy to terminate queries as necessary, their never-ending efforts
will drag the cluster toward failure. As queries timeout from a build up of tombstones or
other issues, retries continue adding load to the cluster. When that load builds to where
several queries are failing, application retries multiply that load, until catastrophic failure
occurs.

Use Multiple Clusters
Following every best practice mentioned here will significantly reduce the risk of downtime
to your Cassandra cluster, but some threats will always remain. The solution to dealing with
this remaining risk is to utilize multiple clusters. Building redundant clusters across separate
data centers means that a single action cannot take down the entire global Cassandra
deployment. It might also be an option to split clusters by application function; for example,
using one cluster solely to take in data and another to store it and perform analytics. In this
use case, a failure of one cluster will still leave a partially functioning application, making a
complete Cassandra failure and application outage extremely unlikely.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 6

About
Instaclustr

© 2021 Instaclustr Copyright | Apache®, Apache Cassandra®, Apache Kafka®, Apache Spark™, and Apache ZooKeeper™ are trademarks of The Apache Software Foundation. Elasticsearch™ and Kibana™ are trademarks for
Elasticsearch BV. Kubernetes® is a registered trademark of the Linux Foundation. OpenSearch is a registered trademark of Amazon Web Services. Postgres®, PostgreSQL® and the Slonik Logo are trademarks or registered trademarks
of the PostgreSQL Community Association of Canada, and used with their permission. Redis™ is a trademark of Redis Labs Ltd. *Any rights therein are reserved to Redis Labs Ltd. Cadence is a trademark of Uber Technologies, Inc.
Any use by Instaclustr Pty Limited is for referential purposes only and does not indicate any sponsorship, endorsement or affiliation between Redis and Instaclustr Pty Limited. All product and service names used in this website are for
identification purposes only and do not imply endorsement.

Instaclustr helps organizations deliver applications at scale through its managed platform for open
source technologies such as Apache Cassandra®, Apache Kafka®, Apache Spark™, Redis™,
OpenSearch®, PostgreSQL®, and Cadence.

Instaclustr combines a complete data infrastructure environment with hands-on technology expertise
to ensure ongoing performance and optimization. By removing the infrastructure complexity, we
enable companies to focus internal development and operational resources on building cutting edge
customer-facing applications at lower cost. Instaclustr customers include some of the largest and
most innovative Fortune 500 companies.

https://www.instaclustr.com/platform/managed-apache-cassandra/
https://www.instaclustr.com/platform/managed-apache-kafka/
https://www.instaclustr.com/platform/managed-apache-spark/
https://www.instaclustr.com/platform/managed-redis/
https://www.instaclustr.com/platform/managed-opensearch/
https://www.instaclustr.com/platform/managed-postgresql/
https://www.instaclustr.com/platform/managed-cadence/

