
COMPARISON DATASHEET

Instaclustr Managed Cassandra vs
Dynamo DB

Commercial in Confidence

Introduction
Many people consider Apache Cassandra and DynamoDB as potential datastore technologies when
looking to build high-scale, high-reliability services in the cloud. Both technologies are popular and
well-proven to deliver at scale. However, choosing the technology most appropriate for your use
case can have a significant impact on the cost of building, maintaining, and running your application.

This article considers a real-world use case, analyzes the costs of running on Instaclustr Managed
Cassandra vs DynamoDB, and discusses how the features and cost models of the two technologies
could impact the architecture of your solution. (All pricing presented is for the US East 1 AWS
region.)

Use Case
The use case we are considering is the heart of Instaclustr’s monitoring system, Instametrics.
Instametrics is a time series database collecting monitoring data from the fleet of servers that we
manage. The Apache Cassandra database contains both the raw (20 second) level metrics and the
roll-ups of those metrics to 5 minute, 1 hour, etc. level and Cassandra’s TTL features used to expire
aged data. These metrics include data down to the table level in Cassandra and topic level in Kafka
for an average of around 3500 metrics per monitored host. The cluster that hosts the database
runs both Apache Cassandra and Apache Spark on the same nodes with Spark used to perform
the analytics necessary for the rollups. Data is read from the cluster to serve the monitoring pages
on the Instaclustr console, the Instaclustr monitoring API, and for other purposes such as checking
cluster health as part of automated operations.

Commercial in Confidence

The Key Attributes of the Instametrics Cluster:
•	 36 i3.2xlarge nodes (co-hosting Apache Cassandra and Apache Spark) (this cluster runs

continuously with no scaling up/down for peaks).

•	 Each metric event written is, on average, ~100 bytes of data.

•	 Baseline load (raw metrics received) of 3060 batch writes per second. Each batch contains ~150
rows for a total of ~460k writes / second base load.

•	 Additional load when writing roll-up results in 16,200 batch writes/second. Each batch contains
~100 rows for a total of 1.6M writes/second from this load and total peak of just over 2M writes
per second. This peak load occurs for about 1 minute out of every 5 (20% of the time).

•	 The baseline read load on the cluster is about 18,000 reads per second. Each read retrieves ~15
rows for a total baseline read load on the cluster of 270k rows/sec.

•	 Additional loads when reading data for the roll-ups is about 144,000 reads per second. These
reads are actually using Cassandra functions to aggregate data before returning with each read
using data from ~15 rows for 2.1M rows/sec read in total. The cluster is also at peak read load for
about 20% of the time.

•	 The cluster currently stores around 54TB of data with a replication factor of 2.

Cost of Instaclustr Managed Cassandra Solution
The AWS infrastructure cost for this cluster (including instances, network, S3 backup, and using
reserved instances) is $19,044 per month. Adding Instaclustr management fees to this cluster
for a completely managed solution would, at list price, bring total cost approximately $58k per
month. Instaclustr has recently released an offering based on the i3en.xl instance type which offers
excellent value for money. Migrating to this instance type is expected to bring our total cost down to
more like $40k per month inclusive of management fees (so we’re migrating soon!).

Cost of AWS Dynamo DB Solution
AWS offers two pricing models for DynamoDB—On Demand Capacity and Provisioned Capacity.
The On Demand Capacity model charges per individual read and writes, while the Provisioned
Capacity model charges for an allocation of read and write throughput capacity on an hourly basis.
The Provisioned Capacity model is significantly cheaper when you have a relatively consistent
workload and therefore more suitable for this use case with relatively constant, predictable
throughput, so we will work through that in detail.

For a single-region use case such as ours, there are four main cost components to consider:

•	 Write Capacity Units (WCU):
Each WCU allows 1 write per second (for items up to 1kb in size). Each WCU costs $0.00065 	
per hour ($0.4758 per month) on demand or $0.0128 per hour per hundred units on 12 month
reservation ($0.093696 per unit per month).

Commercial in Confidence

	 Read Capacity Units (RCU):
Each RCU allows 1 strongly consistent read or 2 eventually consistent reads per second (for
items up to 4kb in size). Each RCU costs $0.00013 per hour ($0.09516 per month) on demand or
$0.0025 per hour per hundred units on 12 month reservation ($0.0183 per unit per month).

	 Storage:
	 $0.25 per GB per month. One important note here is that DynamoDB includes a per-item storage

overhead of 100 bytes to account for indexing which is significant with tiny items such as in our
use case.

	 Backup:
	 $0.1 per GB per month.

Our requirements for each of these can be determined from the current cluster load:

•	 Write Capacity Units: 459,000 base load, 2,079,000 during peaks (20% of time)

•	 Read Capacity Units: we are using eventually consistent reads so 270,000/2 = 135,000 base
load and 2,160,000/2 = 1,080,000 during peaks (20% of time)

•	 Storage: 54,720 GB (estimating DynamoDB’s 100 byte per item overhead and Cassandra’s
native data compression offset the replication factor)

•	 Backup: also 54,720 GB

To determine AS cost, we firstly need to work out the cost per read/write capacity unit per month.
Taking into account both the up-front component and the monthly component:

WCU RCU Maths

Cost per 100 CU per hr 0.0128 0.0025 A

Yearly upfront per 100 CU 150 30 B

Total cost per 100 CU per month 21.8696 2.5 X = (A*732) + (B/12)

Total cost per CU per month 0.218696 0.025 X/100

Commercial in Confidence

Applying this to our base load gives us the following cost calculation using 12 month reserved
capacity:

Item Required Volume Cost per Item per
Month Total Cost

WCU 459,000 $0.218696 $100,381

RCU 135,000 $0.025 $3,375

Storage 54,720 $0.25 $13,680

Backup 54,720 $0.1 $5,472

Total $122,908

We now need to add capacity for the peak loads. As the peaks run for roughly 20% of the time, it
seemed to me on first review that we had two choices: reserve capacity 100% of the time, or use on
demand capacity and pay the higher per unit cost. However, reading the fine print, capacity can only
be reduced once per hour (which some extra fine print that allows 27 times per days) so increasing
and decreasing capacity every five minutes would not work.

So, let’s calculate the cost based on purchasing reserved capacity to cater for the peak load:

Item Required Volume Cost per Item per
Month Total Cost

WCU 2,079,000 $0.218696 $454,669

RCU 1,080,000 $0.025 $27,000

Storage 54,720 $0.25 $13,680

Backup 54,720 $0.1 $5,472

Total $500,821

Commercial in Confidence

That’s a big difference but we’re not quite finished yet. We would still need to add support at, say, 5%
extra (the actual rate depends on your overall AWS bill) and we also need to run a separate Apache
Spark cluster as our Instametrics cluster is also running Spark and the Spark jobs. An estimate for
AWS EMR Spark Cluster would be $2,550 per month but on top of this you would have significant
self management costs as the EMR model provides minimal management. With these additions we
get to a grand total AWS cost of $528,431.

In case you’re wondering if the other pricing models would be a better fit, crunching the numbers
gives a monthly cost of $1.1M for using Provisioned Capacity on demand and $3.9M if you use the
full on demand model—a massive penalty if you pick the wrong pricing model for your use case.

Now, clearly before you got to a DynamoDB bill of $500k per month you would be having a hard think
about how to change your application design to reduce costs. An obvious way to do this would be to
group up several individual metrics into a single DynamoDB item thus reducing our number of writes.
In doing this we have to be aware of the limit of 1KB per write which equates to 10 of our 100 byte
items. It seems unlikely we can come up with a reasonable design that both groups at write time and
groups in a way that reduces the number of reads we need to do so we’ll leave the number of reads
consistent. Our storage requirements will also be reduced due to less item indexing overhead giving
us the following cost estimate:

Item Required Volume Cost per Item per
Month Total Cost

WCU 207,900 $0.218696 $45,467

RCU 1,080,000 $0.025 $27,000

Storage 29,848 $0.25 $13,680

Backup 29,848 $0.1 $2,985

Total $89,132

Support $2,795

Spark Cluster $2,550

Grand Total $94,477

Commercial in Confidence

So, with some re-architecting effort we’ve brought our cost down to the ~50% more than our i3.2xl
Managed Cassandra cluster and still more than double our estimated cost using i3en.xl instances.
This is summarized in the following chart:

Monthly Total Cost and Saving

It should be fairly clear from the costing above that the high volume of writes in our use case made it
a particularly good fit for Cassandra but there is still plenty of room for other use cases to save cost
using Managed Cassandra. The 50% cost advantage of the i3en.xl scenario significantly broadens
the use case where Managed Cassandra will save you money.

Of course, cost is only one aspect to consider. Other advantages of Cassandra over DynamoDB
include:

•	 Cassandra Apache Foundation Open Source, guaranteeing you no vendor lock-in and also
providing compatibility with a wide range of open source tools

•	 Cassandra provides tunable consistency not just within the local data center but across multiple
active-active regions.

•	 DynamoDB’s capacity is limited by partition with a maximum of 1,000 write capacity units and
3,000 read capacity units per partition. Cassandra capacity is distributed per node. In this
example above we are processing up to 55,000 writes per second per node all of which could
happily be directed to a small number of partitions at any one time.

•	 Cassandra’s CQL query language provides a simple learning curve for developers familiar with
SQL.

•	 DynamoDB only allows single value partition and sort (called clustering in Cassandra) keys while
Cassandra support multi-part keys. A minor difference but another way Cassandra reduces
application complexity.

•	 Cassandra supports aggregate functions which in some use cases such as this one can provide
significant efficiencies.

Commercial in Confidence

© Instaclustr 2020
This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is not
warranted to be error-free, nor is it subject to any other warranties or conditions, whether expressed orally or implied in law, including implied
warranties and conditions of merchantability or fitness for a particular purpose. Instaclustr specifically disclaims any liability with respect to
this document, and no contractual obligations are formed either directly or indirectly by this document.

www.instaclustr.com @instaclustr info@instaclustr.com

If you’d like to compare the cost of running your application on Cassandra vs DynamoDB then please
get in touch with Instaclustr and we’ll be happy to work with you to optimize a cost model specific to
your requirements.

Apache Cassandra®, Apache Spark™, Apache Kafka®, Apache Lucene Core®, Apache Zeppelin™ are trademarkS of the Apache Software Foundation in the
United States and/or other countries. Elasticsearch and Kibana are trademarks for Elasticsearch BV, registered in U.S. and in other countries.

About Instaclustr
Instaclustr delivers reliability at scale through our integrated data platform of open
source technologies such as Apache Cassandra®, Apache Kafka®, Apache Spark™,
Elasticsearch, and Redis. Our expertise stems from delivering more than 70 million node
hours under management, allowing us to run the world’s most powerful data technologies
effortlessly.

We provide a range of managed, consulting, and support services to help our customers
develop and deploy solutions around open source technologies. Our integrated data
platform, built on open source technologies, powers mission critical, highly available
applications for our customers and help them achieve scalability, reliability, and performance
for their applications.

http://www.instaclustr.com
https://twitter.com/Instaclustr
mailto:info%40instaclustr.com?subject=
https://www.instaclustr.com/solutions/managed-apache-cassandra/
https://www.instaclustr.com/solutions/managed-apache-kafka/
https://www.instaclustr.com/solutions/managed-apache-spark/
https://www.instaclustr.com/solutions/managed-elasticsearch/
https://www.instaclustr.com/solutions/managed-redis/

