
White Paper

10 Rules For Managing
Apache Cassandra®

Introduction
Why Choose Apache Cassandra?
As a NoSQL database with unparalleled scalability and
availability, open source Apache Cassandra® is quickly
becoming the technology of choice to manage large
volumes of data generated by applications.

Cassandra is a highly scalable and distributed database
designed to handle massive amounts of data across
multiple nodes and data centers. Its decentralized
architecture provides high availability, fault tolerance,
and linear scalability, making it well suited for
applications that generate and process enormous
volumes of data in real-time.

It’s no surprise that Apache Cassandra has emerged as
a popular choice for organizations of all sizes seeking a
powerful solution to manage their data at a scale—but
with great power comes great responsibility.

Due to the inherent complexity of distributed
databases, this white paper will uncover the 10 rules
you’ll want to know when managing Apache Cassandra.

Copyright ©2024 Instaclustr, All rights reserved.

info@instaclustr.comwww.instaclustr.com @instaclustr 2

1. Understand Your Access Patterns
Before designing your data model, take the time to thoroughly analyze your data and how
it will be accessed by your application. Consider the types of queries you’ll be running, the
frequency of reads and writes, and the relationships between different data entities.

This understanding will guide you in making informed decisions about how to partition your
data, select appropriate primary keys, and de-normalize your scheme if needed. By aligning
your data model with your access patterns, you can:

■ Optimize query performance

■ Minimize data duplication

■ Ensure efficient data retrieval

Additionally, understanding your data and access patterns will help you choose the
consistency levels and replication strategies to meet your application’s availability and data
integrity requirements.

2. Design Your Data Model Carefully
Data modeling is the process used to analyze, organize, and understand the data
requirements for your Cassandra database. We recommend that you consider the following
practices to design the optimal Cassandra data model:

Keyspace Review

Item Rationale

Is the replication factor set to at least 3?

Replication factor of at least 3 is required
for Instaclustr SLAs to apply and highly
recommended for data protection and high
availability.

Is the replication strategy set to network
topology strategy?

Network topology strategy is highly
recommended to ensure data is replicated to
minimize impact of likely failures in underlying
infrastructure environment (e.g. replicate across
AWS availability zones) and to enable additional
data centers to be added to the cluster without
table rebuilds.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 3

Is the data center name correct?

Data center name specified in replication
strategy must match the configured Cassandra
data center name (viewable in Instaclustr
console).

Durable writes set to true (default)
Setting durable writes to false introduces a risk
of lost writes in the event of failure (for a small
improvement in write performance).

Table/Column Family Review

Item Rationale

Schema
Is it properly denormalized? Does it require
multiple queries to fetch information, or could
the table just include info from the other table? Is
there potential to consolidate data from multiple
tables?

Developers from relational background may tend
to normalize models resulting in inefficient use
of Cassandra.

Partition key cardinality allows high number of
partitions (minimum 100,000 possible preferred)

A low number of partitions will lead to inefficient
read and writes and increase risk of unevenly
sized partitions

Partition key prevents substantial skewing of
partitions?

If it is possible for a small number of partitions to
have vastly higher numbers of rows than average
(say 100x) then this can cause significantly
uneven performance and disk usage.

Using collections (maps, list, set)? Number of
elements is 64k, keep the total size of the collect
small (<1MB) as the map is not paged.

Very large collections can negatively impact
read/write performance.

Is gc_grace_seconds changed from default
(864000)? If so, is that appropriate and impact
considered?

Lowering gc_crace_seconds results in space
being reclaimed more quickly after deletes but
runs small risk of “resurrected deletes” given we
only run repairs weekly.

Is chosen compaction strategy appropriate? • SizeTieredCompactionStrategy: default and
suitable as a starting point for most uses
cases with balance of reads and writes

• LevelledCompactionStrategy: does
more compaction work to improve read
performance. Generally used if high ratio of
reads to writes.

(continued)

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 4

Item Rationale

• DateTieredCompactionStrategy: useful for
data where data is “hot” when first written but
sees less access over time.

• Check that the compaction strategy is
appropriately tuned (see Cassandra Docs).
Defaults are usually ok, but DTCS requires
specific compaction options set to be
effective.

Secondary Indexes
Is cardinality of secondary index low? Cardinality of index should be at least an order

of magnitude lower and preferable at least 100x
lower than indexed table.

Also, secondary indexes on Boolean columns
are not effective.

See Cassandra Docs

Is the indexed column frequently updated/
deleted?

Overhead of maintaining index will be incurred
on each update/delete and may also result in
excessive tombstones in the index table.

Queries
Are there logged batches used? If so, are they
relatively small (<100)

Logged batches require coordinate node to con-
trol all operations and can result in very high load
on coordinator node for large batches. Logged
batches are only required for atomic operations
across multiple rows/tables (not performance).

Are there unlogged batches? If so, are they small
(<100) or on the same partition key?

Unlogged batches can improve performance but
need to either be small or on a single partition
key otherwise they can negatively impact
performance. Note that unlogged batches do
not provide atomic operations.

For large range queries, is the client paging
through results?

Paging is necessary to read large results sets
without memory constraints. Most drivers
have inbuilt paging support, but it needs to be
explicitly turned on in query code.

Does the query on the index lookup a row in a
large partition?

Whole partition will be scanned to find matching
rows—potentially expensive reads.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
http://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_configure_compaction_t.html
http://docs.datastax.com/en/cql/3.1/cql/ddl/ddl_when_use_index_c.html

info@instaclustr.comwww.instaclustr.com @instaclustr 5

3. Optimize Query Performance
Ensuring optimal query performance in Cassandra databases will help achieve scalability,
low latency, high throughput, predictable response times, and cost efficiency.

The following strategies should be considered when optimizing for query performance:

■ Choose the right consistency level for read and write operations: Lower
consistency levels, as ONE or QUORUM, can improve performance at the cost of
potential data inconsistencies.

■ Use indexing judiciously: Leverage secondary indexes sparingly and consider their

impact on read and write performance.

■ Leverage batch operations: Group related writes into batches to reduce the number

of round trips to the databases, improving overall write throughput.

■ Continuous infrastructure optimization: Ensure proper resource allocations, such

as CPI, memory, and disk, to handle the database workload efficiently. Additionally,
optimizing network configurations, storage systems and implementing high availability
and fault tolerance measures will contribute to improved query performance.

4. Infrastructure Matters
Examining your Cassandra deployment at the architecture level is a smart way to maximize
availability by preventing failures in the physical infrastructure. But even with a strong
architecture in place, infrastructural issues can hamper a Cassandra cluster’s availability.

Making the right infrastructural preparations can prevent these events from causing
downtime. Here’s what you should consider:

■ Keep Some Capacity in Reserve

 By keeping disk usage under 70% during period of normal load, as well as CPU utilization
at around 60-70%, sudden load increases shouldn’t lead to instability. Going above these
thresholds is possible, but only advisable if you have an expert understanding of your cluster
and trust that you can safely push your luck.

(continued)

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 6

■ Use More, Smaller Nodes

 Smaller nodes offer advantages in maintaining availability. Maintenance operations performed
on smaller nodes will finish faster, reducing the risks present while they are occupied. At the
same time, the total processing capacity of the cluster takes less of a hit when a single node
fails as opposed to a larger one. Compare running a cluster of 6x r7g.xl AWS instances versus
a cluster of 3x r7g.2xls—the cluster of smaller nodes offers the same or greater processing
power for the same value, while achieving an infrastructure where a single node failure has only
half the impact.

■ Be Vigilant in Monitoring the Cluster

 The truth is that catastrophic issues rarely show up out of the blue. Most often there’s a
history of danger signs before the failure; possibly an increase in pending compactions,
warnings of tombstones and large partitions, spikes in latency, or mutations getting dropped.
Observe these issues and address them as they come; a small fix in time will save you from a
large failure.

5. Tune Performance To Maximize
 Application Uptime
Struggling with the uptime of your application? A lack of tuning could be the culprit.

Developing tuning strategies will help to improve application uptime as they optimize the
database’s performance, ensuring efficient query processing and minimizing response
times. By fine-tuning hardware resources, configuring Cassandra settings, and optimizing
data models and queries, teams can proactively address performance bottlenecks, prevent
downtime, and provide a reliable and responsive application experience.

6. Plan for Growth and Scalability
The odds are likely that your database will grow both in size and complexity—so you better have a
plan for ready for achieving scalability without hindering your growth.

A few key ideas to consider for your planning include:

■ Data model design: Distribute data evenly across nodes by selecting appropriate partition
keys. Avoid hotspots and uneven data distribution that can impact performance as your
data grows.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 7

■ Hardware and infrastructure: Consider factors such as CPU, memory, disk I/O, and network
bandwidth. Scale up by adding more powerful hardware to existing nodes or scale out by
adding more nodes to the cluster.

■ Node capacity planning: Set thresholds and establish guidelines to determine when to add
more notes or upgrade existing hardware.

■ Adding nodes: Use Cassandra’s automatic token allocation or token assignment tools to
distribute data evenly across the new nodes.

7. Plan for Node Failures
Cassandra is designed to handle node failures, but it’s still important to plan for node failures so
you can ensure the resilience and continuity of your Cassandra cluster. This involves strategies
such as replication, where data is replicated across multiple nodes to provide redundancy. By
configuring replication factors and consistency levels appropriately, you can ensure the data
remains accessible even if some nodes fail.

Additionally, planning for node failures involves setting up mechanisms for automatic node
replacement and repair operations to maintain data consistency and prevent data loss. By
proactively addressing node failures, you can minimize downtime, maintain data integrity, and
provide high availability for your applications.

8. Ensure Proper Data and Disaster Recovery
Even though Cassandra is highly available and highly fault tolerant, there are several important
rules to follow:

■ Establish a robust backup strategy.

■ Take regular snapshots of your Cassandra data and store them in a secure location.

■ Implement incremental backups to capture changes since the last full backup.

■ Test the restoration process regularly to ensure backups are reliable.

■ Leverage replication and configure Cassandra to replicate data across multiple nodes and
data centers.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 8

■ Implement a disaster recovery plan that involves having a well-documented procedure to
recover from catastrophic events. This plan should include steps for restoring backups,
rebuilding the cluster, and re-establishing replication.

By following these rules, you can minimize the impact of data loss or disasters and ensure the
resilience and recoverability of your Cassandra deployment.

Pro Tip: For maximum fault tolerance, a Cassandra cluster should be architected using 3 racks,
which are each mapped to an Availability Zone (AZs). This configuration allows the loss of one AZ
(rack) and QUORUM queries will still be successful

9. Security
Every year presents a new wave of database compromises and cybercriminals continue to find
new ways of exploiting unsecured MongoDB, Elasticsearch, Hadoop, and Cassandra clusters.

So, how can you protect your cluster from being attacked?

■ Enable authentication. As authentication is not enabled by default, this is the single most
important thing you can do to secure a Cassandra cluster. Simply set the authenticator
option to PasswordAuthenticator and authorizer option to CassandraAuthorizer in the
cassandra.yaml file to enable password-based authentication. If you have a multi-datacenter
configuration you must also change the replication class of the system_auth keyspace
to NetworkTopologyStrategy. You should also change the default password.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 9

 If your cluster has datacenters spanning multiple regions, you should also enable SSL.
If not, then your password will be transmitted in plaintext during authentication and
could potentially be intercepted

■ Stop using the default superuser account (the “Cassandra” account). Create a new
superuser account with a different name and a strong password (and ideally a non-superuser
account as well), then set the password for the default superuser to a very long, random string
and forget it or lock it away somewhere secure.

■ Ensure your JMX ports are not publicly accessible. While it is possible to secure your
JMX port, there is rarely a case where it needs to be accessible via a public address. Check
your firewall rules and make sure that this port (7199) is not accessible outside of your private
network.

■ Enable SSL. If you have a cluster spanning multiple regions or need to connect using public
networks, then Cassandra’s SSL feature should be used to protect both your inter-node traffic
and client connections

10. Monitoring
To keep your Cassandra cluster in good health and continue getting an optimal performance,
consider the following best practices to effectively and efficiently monitor performance:

1. Define your key monitoring goals: Clearly define the objectives and metrics you want
to monitor in your Cassandra cluster. This could include performance metrics (latency,
throughput), resource utilization (CPU, memory, disk), replication and consistency metrics
and cluster health indicators. Align your monitoring goals with your application’s requirements
and SLAs.

2. Choose appropriate monitoring tools: Select monitoring tools that are specifically designed
for Cassandra or have built-in support for it like the Instaclustr Monitoring API with Prometheus.

3. Monitor key performance metrics: Track critical performance metrics such as read and write
latencies, compaction rates, cache hit ration, and disk usage. Set up alerts and thresholds,
which will help enable proactive identification and resolution of performance bottlenecks.

4. Monitor cluster health and availability: Monitor the health of individual nodes, cluster
connectivity, and overall cluster status. When indicators show a failed or non-healthy state of
your cluster, take immediate action. For example, if the disk usage is over 75%-90% in the last
hour, it indicates that the nodes are filling up and soon it will not provide enough workspace for
normal Cassandra operations. Teams can quickly take action by removing excess data from the
cluster or adding more nodes to the cluster.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr

info@instaclustr.comwww.instaclustr.com @instaclustr 10

Monitoring will help maintain the stability, performance, and reliability of your Cassandra cluster. It
enables proactive management, early detection of issues, efficient capacity planning and effective
troubleshooting, ensuring that your Cassandra deployment operations optimally and meets the
needs of your application.

A Roadmap for Success
The benefits of choosing Apache Cassandra as your NoSQL database are enormous and
only growing by the day. As a 100% open source technology, Cassandra is backed by a
robust and active community, ensuring that quick fixes and new, innovative features are
the norm—and never the exception.

But managing a Cassandra database comes with a host of complicated and ongoing
challenges, especially since many organizations require access to a mature operational
environment with 24x7 staff support.

By partnering with a knowledgeable and experienced provider like Instaclustr,
organizations can best navigate the complexities and nuances of managing an Apache
Cassandra database—and create the optimal performance for the long-haul.

With more than 300 million node hours of operational experience and counting, our
Apache Cassandra experts have seen it all and helped organizations solve their unique
challenges.

Reach out to our team today and get started on your roadmap for Cassandra success.

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
https://www.instaclustr.com/support-solutions/cassandra-support/

info@instaclustr.comwww.instaclustr.com @instaclustr 11

About
Instaclustr
Instaclustr helps organizations deliver applications at scale through its managed platform for
open source technologies such as Apache Cassandra®, Apache Kafka®, Redis™, OpenSearch®,
PostgreSQL®, and Cadence®.

Instaclustr combines a complete data infrastructure environment with hands-on technology expertise
to ensure ongoing performance and optimization. By removing the infrastructure complexity, we
enable companies to focus internal development and operational resources on building cutting edge
customer-facing applications at lower cost. Instaclustr customers include some of the largest and
most innovative Fortune 500 companies.

© 2024 NetApp Copyright. NETAPP, the NETAPP logo, Instaclustr and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company
and product names may be trademarks of their respective owners. Apache®, Apache Cassandra®, Apache Kafka®, Apache Spark™, and Apache ZooKeeper™ are
trademarks of The Apache Software Foundation.

3-20m
ar24

mailto:info%40instaclustr.com?subject=
http://www.instaclustr.com
https://twitter.com/Instaclustr
https://www.instaclustr.com/platform/managed-apache-cassandra/
https://www.instaclustr.com/platform/managed-apache-kafka/
https://www.instaclustr.com/platform/managed-redis/
https://www.instaclustr.com/platform/managed-opensearch/
https://www.instaclustr.com/platform/managed-postgresql/
https://www.instaclustr.com/platform/managed-cadence/

