
White Paper

LESSONS LEARNED
In PostgreSQL®

White Paper I 2Lessons learned in PostgreSQL

Table of contents
03 Overview

03 About the author

04 The incident

12 Aftermath and lessons learned

— Perry Clark

White Paper I 3Lessons learned in PostgreSQL

 OVERVIEW
If ever there was a list of ‘nightmare scenarios’ that every business
owner would agree upon, very near the top of that list would certainly be
‘irrecoverable data loss.’

While many prudent companies have detailed business continuity plans
and standard operating procedures in place to minimize the impact when
something bad eventually does occur, for whatever reason, others simply
do not—leading to a nightmare scenario.

In this white paper, Instaclustr Professional Services Consultant Perry
Clark recounts a true story about such a scenario, and how he and his
team was able to overcome the daunting challenges presented.

 ABOUT The author
Norfolk, Virginia based Perry Clark is an Instaclustr Professional
Services Consultant. He has 15 years of experience in Linux servers,
services, and database administration.

Prior to joining Instaclustr, Perry served for many years as the Director
of CloudOps and senior database administrator for an ERP/accounting
software company. His duties included the administration of global cloud,
onsite, and internal systems. He enjoys troubleshooting and performance
tuning.

In his free time, he enjoys woodworking, fixing stuff, and restoring
his 1965 Mustang Coupe. In the hot summer months, he and his wife,
Carolyn, can be found boating around the lower Chesapeake Bay.

Ah, Houston, we’ve had a problem.
— Jim Lovell

White Paper I 4Lessons learned in PostgreSQL

 THE Incident
“Send 0.5 BTC”
A couple of years ago I received a call from our customer service
department with a panicked customer conferenced in. The customer
encountered a message from their ERP Client application that their
ERP Database “was not found.”

We confirmed in their client application that the connection string
(the server, port, database name, and user credentials) were correct,
and there were no leading or trailing spaces, no typos, proper addresses,
and so on.

Indeed, everything appeared to be perfectly fine.

The site administrator I was working with had been at this company for
ages. He led their implementation of the ERP system, was responsible
for the network and server infrastructure, and overall had a good
understanding of how the ERP system worked. I always assumed he
was a DBA or IT professional, so I was surprised to learn that he was a
chemical engineer.

Given the gravity of the situation, it was time to escalate to deeper remote
troubleshooting techniques.

We started a screen share from their workstation and attempted several
other diagnostics. Ping returned the proper IP, and the server was
responsive. Then I noticed that the workstation we were screen sharing
from had PgAdmin4 which is a GUI based PostgreSQL® management and
query tool; I recommended we launch that app.

Navigating in PgAdmin4 I could clearly see the database and connect to
it as an admin user. The database names were there, so I selected it to
check the contents of the schema and tables therein.

What I saw was not good.

Out of our applications’ 600+ tables and 1300+ stored procedures, there
was 1 simple table remaining titled “warning.” Inspecting the contents of
that table revealed a row named “warning_text—the content of that row
was quite clear:

“Send 0.5 BTC to this address and go to this site
abcxyz123lmnop456.onion to recover your database!
SQL dump will be available after payment!”

White Paper I 5Lessons learned in PostgreSQL

At the time, .5 BTC was about $750 USD (…wish I knew then
what I know now.)

I stated, “This is ransomware. You will not be sending any bitcoin to
that address. Your database is not there.” Ask me how I knew… well,
that’s a whole other story for another article.

About this time, the customer was getting what is termed a ‘sinking’
feeling. I reassured them that we still had a lot to troubleshoot and
not to panic. I asked if we could do a remote session on the database
server itself.

That is when the customer revealed: “Oh, the other day all our Excel and
Word documents on the shared drive were encrypted with ransomware
but we restored them from a backup. We got hacked because one of
our IT Consultants left MS Remote Desktop running unsecured on our
main server.”

Well, that was certainly a helpful tidbit!

Now I was questioning the trustworthiness of their infrastructure. In my
experience, once a server of infrastructure has been compromised it
cannot be trusted—Are you under active attack? Who is attacking? Why
us? What has been modified? What has been taken? Did they leave a
backdoor? Where has the data gone and how will it be used?

The exercises and feeling one goes through to restore a sense of security
are very similar to being burglarized.

With reasonably strong assurances that they had taken measures to
resolve their security and infrastructure issues, I asked if they had any
backups. “Oh, yes we have nightly backups!” was the reply.

“Great! Let’s see what state those are in!” I said.

We browsed where the backups were stored and found that they were
all extremely small in file size. Basically… ZERO size! Surely, we’re in the
wrong place and looking at the wrong thing.

Calmly, I asked “Let’s take a look at the backup script.”

Last year we said, ‘Things can’t go on like this’,
and they didn’t. They got worse.
— Will Rogers

White Paper I 6Lessons learned in PostgreSQL

Back up plans
Upon inspection I immediately saw the cause of the problem. The script
was calling an older version of pg_dump that was not compatible with
the currently running PostgreSQL server version. This binary mismatch
occurred when they upgraded their PostgreSQL major version and
neglected to check and change the paths to the new version binary for
pg_dump in their backup script.

Essentially, when the backup script was called, there was an error logged
about the version mismatch that no one paid attention to. No backups had
been made for months.

I thought about their remaining options to get them up and running
again. From what I could tell, they had two choices, and neither was very
appealing:

•	 Reimplement their ERP system from the ground up, losing much
historical data and rebuilding customizations

•	 Find a backup and rebuild from there, and deal with the potential
data issues

By now the CEO and CFO were anxiously and impatiently hovering over
my contact on-site. It was too early to manage any expectations, but in
my mind I was thinking they were bleak at best.

“Do you have ANY sort of ‘good’ backup—whole system snapshot,
db backup, anything?” I inquired.

“Yes, I have a whole backup of the database directory from about
6 months ago.”

Well, this was certainly not great news, but still better than I had expected.
I was confident the backup was something like a ‘SELECT – COPY –
PASTE’ from Windows Explorer.

The problem with that is the PostgreSQL server processes were likely
running, connections to the database were still happening, and data was
moving around. However, copying in this manner is guaranteed to cause
a mess. In a perfect world, the proper way to create this backup would
have been to use the pg_basebackup utility which can handle copying the
files without data loss.

White Paper I 7Lessons learned in PostgreSQL

But, alas, we were clearly not in a perfect world. Had they been running
on Instaclustr’s Managed PostgreSQL service, pg_backrest could have
been used to restore to a point in time before they experienced data loss.

By now, several hours had been spent troubleshooting. Feeling somewhat
hopeful, I asked for a new database server with the exact same version of
PostgreSQL that corresponds to whatever version this $PGDATA directory
copy is. Knowing this would take some time, we decided to re-convene
the following morning.

In the meantime, I transferred the ‘backup’ to one of my test servers to
work out the viability of using this copied $PGDATA folder. I spent several
more hours off-the-clock trying various things with the backup. There
were even more problems, but there was a glimmer of hope as well.

…there are known knowns; there are things we
know we know. We also know there are known
unknowns; that is to say we know there are
some things we do not know. But there are also
unknown unknowns—the ones we don’t know
we don’t know.
— Donald Rumsfeld

“Is it working yet?”
The next morning, we reconnected on the new server and I had a pretty
good idea of what needed to be done. Once the PostgreSQL service was
running we would shut it down and swap the $PGDATA directory with the
‘backup’ version and start up the server and cross our fingers.

At first, everything looked OK according to the server startup process,
but when we connected to the database there were no databases listed
(or not the ones we expected).

White Paper I 8Lessons learned in PostgreSQL

Hmm… something must be corrupted, or we need to re-create the
relationship for the server to find the physical location of the database
files. I understood the problem, but I needed to find out how that
mapping worked. We could create new databases and access those—but
something was preventing us from accessing the existing databases.

Clearly, it was time to study some PostgreSQL internals, and time was
quickly dwindling.

The customer was burning up their Support hours, their team had put off
entering new orders until the system was up and running, and their CEO
and CFO were constantly asking “Is it working yet?”

I wasn’t sure how long it would take to get this resolved and I increasingly
felt that the CEO was attempting to blame me for not being able to quickly
unwind the mess that they had created.

I knew that the $PGDATA directory location held the ‘data files’ for the
server, but I didn’t quite fully understand or appreciate the Data Directory
Layout in relation to how the PostgreSQL server uses them.

So, step one was to confirm where PostgreSQL is expecting that directory
to be found:

postgres=# show data_directory;

 data_directory

/data/erp_server

(1 row)

drwx------ 27 postgres postgres 4096 Feb 21 11:40 base

drwx------ 2 postgres postgres 4096 Feb 21 10:58 global

drwx------ 2 postgres postgres 4096 Aug 16 2018 pg_clog

. . .

We knew this already because that is where we had copied the ‘backup’
files to. So, let’s look in the /data/erp_server directory

White Paper I 9Lessons learned in PostgreSQL

Ah-ha! The ‘base’ directory looks like it might have some interesting
things in it, let’s see what is in there:

drwx------ 27 postgres postgres 4096 Feb 21 11:40 -

drwx------ 19 postgres postgres 4096 Feb 21 10:57 --

drwx------ 2 postgres postgres 4096 Feb 21 10:57 1

drwx------ 2 postgres postgres 4096 Feb 21 10:58 12438

drwx------ 2 postgres postgres 4096 Feb 21 11:40 12439

drwx------ 2 postgres postgres 12288 Feb 21 10:57 16393

drwx------ 2 postgres postgres 16384 Mar 20 2019 pgsql_tmp

 oid | datname

--------+---------------------------

 1 | template1

 12438 | template0

 12439 | postgres

 16393 | production_erp

select oid, datname from pg_database order by 1;

These directory sizes looked exactly like what were expected considering
the size of data on disk. This confirmed that we were on the right track.
We need to recreate the relationship between these numbered directories
and the PostgreSQL server.

But where do we set “/data/erp_server/base/16393 = production_erp”?
And why is the directory a number?

On a normally working server if you run:

you will get the mapping of the database name to the numbered directory
in $PGDATA/base:

White Paper I 10Lessons learned in PostgreSQL

But our results were:

Clearly the entry that concerned us was missing. Is it enough to
‘just’ create the entry? We need to understand a bit more about the
pg_database table, so let’s look at the structure:

Some of these are self-explanatory – oid = directory number,
datname = friendly name. The fields that really concerned me were
datlastsysoid, datfrozenxid, and datminmxid.

 oid | datname

--------+---------------------------

 1 | template1

 12438 | template0

 12439 | postgres

postgres=# select oid,* from pg_database limit 1;

-[RECORD 1]-+------------

oid | 12439

datname | postgres

datdba | 10

encoding | 6

datcollate | en_US.UTF-8

datctype | en_US.UTF-8

datistemplate | f

datallowconn | t

datconnlimit | -1

datlastsysoid | 12438

datfrozenxid | 579

datminmxid | 1

dattablespace | 1663

datacl |

White Paper I 11Lessons learned in PostgreSQL

This led to several questions:

•	 How do we know what the appropriate values for those need to be for
the database we are trying to recognize?

•	 What happens if we set it incorrectly?
•	 What happens if we ignore it?
•	 Will it magically rebuild or fix itself?

It was time to seek some additional help

A strong community
By this point I felt like we had gathered enough information about
the situation and probable solution. Now, I just needed a little bit of
help to figure out those last bits. Fortunately, PostgreSQL maintains
excellent documentation and information about these columns.
Reading that information led to the same questions.

I needed some practical, experience-based advice from the PostgreSQL
Community, so I headed over to my company’s PostgreSQL internal
communications channel. This is where the PostgreSQL community
really shines.

If you ask a question, you will get as deep an answer as
needed—sometimes from the very people that develop the software.
The PostgreSQL Community’s commitment to share and spread their
knowledge is amazing.

After several discussions and much exchanging of ideas and scenarios
with a team of PostgreSQL experts all over the world, we determined the
appropriate entries to create in the pg_database table. Then I ran some
schema comparison tests and maintenance utilities; everything was
checking out and their situation was certainly improving.

The time came to try connecting with the ERP Client, and...IT WORKED!
At this point we performed a backup and restore of the database and
made sure the restored copy was usable.

A problem well stated is a problem half solved.
— John Dewey

https://www.postgresql.org/docs/current/catalog-pg-database.html
https://www.postgresql.org/docs/current/catalog-pg-database.html

White Paper I 12Lessons learned in PostgreSQL

The next step was to have the sales department enter some sales orders
 and test the complete order-to-cash cycle, reports, etc. This uncovered
quite a few data issues; data was missing.

The missing data issue appeared to be constrained to a set of related
tables and functionality. Where there were parent/child relationships that
had orphans or missing children. Depending on the relations, some
missing records could be re-created from other transaction data. This led
to iterations of restoring from backups and manipulating data via SQL and
retesting the processes.

After a couple more hours of work, we were able to get the system stable
enough to where processes were working as expected and new data was
going to the proper places. There was still the issue of backfilling the gap
in their data—a task which was divided up amongst their staff to recreate it
from paper copies of invoices, purchase orders, shipping records, and so on.

 AFTERMATH And lessons learned
It took us 4 days to get the system operating. Once everything was stable
from a PostgreSQL server and data standpoint, the project was passed on
to our Implementation team and accounting specialists.

The most important function of any system of record or accounting system
is to produce accurate financial results and they had a bit of work to do to
get there.

Once the dust had settled and the company was up and running again, I
reflected on the many different lessons this experience taught me.

Troubleshoot methodically because there are no ‘dumb’ questions
While it may seem annoying or obvious at times, there is a good reason to
start at the most basic troubleshooting steps. At the very least it’s an
annoying little checkmark on your list, but sometimes that seemingly obvious
and annoying question is the actual solution. All of these troubleshooting
steps help you paint a picture of the actual problem you are trying to solve.

If you get stuck, reach out to the community for help—the chances are that
you are not the first person to ever run into a particular PostgreSQL problem!

The only mistake in life is the lesson not learned.
— Albert Einstein

NetApp® Instaclustr specializes in open source technologies for enterprises. Our managed platform streamlines data infrastructure
management, backed by experts who ensure ongoing performance, scalability, and optimization. This enables companies to focus
on building cutting edge applications at lower costs.

© 2025 NetApp, Inc. All rights reserved. NETAPP, the
NETAPP logo, and the marks listed at www.netapp.com/TM
are trademarks of NetApp, Inc. Other company and product
names may be trademarks of their respective owners.

info@instaclustr.com | www.instaclustr.com

Be flexible—sometimes the solution is not perfect
Thankfully, the company had made a ‘kind of’ backup at some point
and retained it. Even though it was far from ideal, it probably saved them
3 months reimplementing their system and losing many years of
transaction history.

Once you get a foothold towards a solution, be persistent
There were plenty of ‘What-If’ or ‘If-This-Then-That’ moments that took
some reflection, consultation, and outside-the-box thinking. While my
developers were relatively pessimistic about the outcome of this project,
they were helpful with sanity checking some of the more complicated
data rebuilding tasks.

Manage stakeholder expectations in a timely manner
While you may be feeling under pressure to resolve a problem quickly
and efficiently, all stakeholders need to be appraised of the situation
at all points in the process. If you are not comfortable having those
conversations, then reach out to whoever is responsible for the customer
relationship and ask them to relay what is going on in the process.

Reach out to the experts
Seek help from experts that deal with difficult problems every day.
Instaclustr PostgreSQL Consultants and Managed PostgreSQL offerings
can eliminate the worry of running and maintaining a modern and
fault tolerant and highly available PostgreSQL installation and mitigate
problems before they are a concern.

And finally: Don’t overestimate your PostgreSQL and security
management abilities
The threat landscape is constantly evolving. Keeping up with (and
understanding!) PostgreSQL vulnerabilities at https://www.postgresql.
org/support/security/ can be a significant part of your PostgreSQL
administration duties. This is where a managed service can really help
you out, as they are designed with security first by default. There are
numerous capabilities and benefits to a managed PostgreSQL service
that are much simpler to implement than if you were to configure them
on your own.

3-22m
ay25

http://www.netapp.com/TM
mailto:info%40instaclustr.com?subject=
https://www.instaclustr.com/
https://www.instaclustr.com/services/postgresql-consulting/
https://www.instaclustr.com/platform/managed-postgresql/
https://www.postgresql.org/support/security/
https://www.postgresql.org/support/security/

