A (,///”/’*

The Benefit

Open Source==<—
and the/Risks
of Open Core

=
Understanding the Differences ‘\%

Between the Two Models \\
= NS
NS

> \ y
Danese Cooper & ’Aﬁ‘dy\r
~ ; ‘\ QAN %;\{\S}

/) PR
A NN

|

REPORT

:nstaclustr

by NetApp

HARNESS @i
reliable applications

faster

THE POWER OF ... conutingona

global support
Migration to open source
Open source strategies
Heath checks

Technology kickstarter package
Solution architecture
Operational review

Managed platform for
open source technologies

Deploy, manage, and monitor all
components of your data layer
and related infrastructure

ka%ag Gdence@ m
’ ®
‘\ Spor‘ll(\z @ !\R"z’;;gmpe,«

© 2023 NetApp Copyright. NETAPP, the NETAPP logo, Instaclustr and the
marks listed at http:/www.netapp.com/TM are trademarks of NetApp.
Inc. Other company and product names may be trademarks of their
respective owners. Apache®, Apache Cassandra®, Apache Kafka®,
Apache Spark™ and Apache ZooKeeper™ are trademarks of The
Apache Software Foundation

https://www.instaclustr.com/contact-us/?utm_medium=referral&utm_source=orielly&utm_campaign=spot-brand-brand-24Q4-ww-aware-content-iccontactus&utm_content=instaclustr-contact-us

The Benefits of Open
Source and the Risks of

Open Core

Understanding the Differences
Between the Two Models

Danese Cooper and Andy Oram

Beijing + Boston + Farnham -« Sebastopol « Tokyo [KONR{=I|NAE

The Benefits of Open Source and the Risks of Open Core
by Danese Cooper and Andy Oram

Copyright © 2022 O’'Reilly Media Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Rachel Roumeliotis and Jeff Proofreader: Justin Billing

Bleiel Interior Designer: David Futato
Production Editor: Jonathon Owen Cover Designer: Karen Montgomery
Copyeditor: nSight, Inc.

March 2022: First Edition

Revision History for the First Edition
2022-03-10: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098117467 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. The Benefits of
Open Source and the Risks of Open Core, the cover image, and related trade dress are
trademarks of O'Reilly Media, Inc.

The views expressed in this work are those of the author(s) and do not represent the
publisher’s views. While the publisher and the author(s) have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the author(s) disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Instaclustr. See our state-
ment of editorial independence.

978-1-098-11746-7
LSI

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098117467
http://www.oreilly.com/about/editorial_independence.html
http://www.oreilly.com/about/editorial_independence.html

1.

Table of Contents

How Open Source Changed the Software Industry
Where Is Open Source Dominant?

Why Users Ask for Open Source

Sustainability and Health in Open Source Projects

. Why Companies Find Open Source Daunting.

Risks of Open Core for Customers and Vendors
How Open Core Undermines True Open Source

Distinguishing Open Core from Other Trends.

Red Hat

MySQL

Corporate Funding
Closed Core

Dual Licensing
InnerSource
Source Available

. Why Open Source Is Better Than Open Core................

Open Source Mitigates Vendor Lock-in

Open Source Nurtures a Healthy Community That Drives

Better Innovation

13

17
19
21

23
23
24
25
25
25
26
26

29
29

30

Open Source Increases Code Quality Through External
Code Inspections

Is 100% of the Code Licensed Under an Unmodified, OSI-

Approved License?

Is There a Diverse and Healthy Community Around the
Code?

Is the Open Source Project Managed by an Independent
Body?

How Does the Vendor Make Money?

Is There a Published Roadmap for the Project?

How to Sustain a Company While Supporting Open Source.

Closed Core

Cloud Offerings

Service and Custom Development
Nonprofit Status

Conclusion

30

33

33

34

34
35
35

37
37
38
38
39
39

iv

| Table of Contents

Preface

The open source movement has taken center stage in software
development, and its influence echoes through other areas of life
such as open culture and open data. Many software companies hope
to cement both their revenue sources and their status in open source
communities by offering a mixture of open source (also called free)
and closed (proprietary) software. The combination is generally
called open core.

The variety of strategies adopted by software companies, and the use
of similar terms for very different things, make it hard for many
software users to understand when they have access to open source
versus open core; therefore, the clients of open core companies may
be taking on risks they don’t understand. Indeed, the companies
themselves are taking on risks in an open core strategy. This report
provides an overview of open source and open core along with a
discussion of what makes each practice attractive and where the
risks are.

The authors are not neutral in this discussion. Despite the wide-
spread adoption of open core software by many companies, we find
that it tends to have negative long-term impacts on vendors and
customers alike. On your journey through this report, you can form
your own judgments.

CHAPTER1

What Is Open Source and Why s It
Popular?

Effectively, open source is a model for software development that
allows everyone to use software without restrictions, adapt it to their
needs, and share their changes with other people. The concept of
open source also involves a constellation of practices:

o Communities of programmers and users, often spanning the
globe, who collaborate to improve the software

o Transparent communications, fully documented in open
archives

o Software licenses that guarantee the rights to use, change, and
share the software

o Public, inclusive review processes

o Living repositories that preserve the entire history of a soft-
ware project’s development, including discussions about choices
made

Strictly speaking, most of the items in this list are not needed to call
a project open source. Although modern open source projects focus
on processes—building community, adhering to healthy governance
practices, achieving stable funding, etc.—technically, any time a
developer releases code under an open license, it's open source.
The Open Source Initiative (OSI), a nonprofit set up by leaders
throughout the worldwide open source community, has approved

https://opensource.org

many such licenses. Most of those licenses also pass muster with
another key organization that was one of the earliest and most
influential leaders in this movement, the Free Software Foundation
(ESF).

Some open source licenses are short and simple, whereas others are
longer and strive to prevent many possible problems that have been
seen over the decades. But most don’t come close to the complexity
of the licenses that normally accompany closed software, which
often incorporate surprising and cumbersome restrictions on users.

Still, the previous list of practices applies to most important open
source projects today. We will see in the course of this report that
the first two items in the list, communities and communications, are
central to the success of open source and tend to be problematic in
open core.

How Open Source Changed the Software
Industry

Open source historically reflects an intentional return to an earlier
ethos in the technology industry. During the initial rise of software,
most practitioners were either scientists or hobbyists who freely
shared information and innovation as the norm. Academics, engi-
neers in the field, and software hobbyists took for granted the
exchange of source code through floppy disks, magnetic tape, and
eventually electronic networks. These programmers realized that it
took the combined work of all practitioners to debug and co-invent
their ideas.

By the time the concept of open source arrived, however, sharing
and collaboration in computing had been overshadowed by the
tremendous commercial value of software, engendering fierce com-
petition over prices and features. Software and hardware manufac-
turers had discovered the power of vendor lock-in, a clever and
ever-evolving set of practices that make it difficult for customers
to switch vendors. Examples of vendor lock-in include physical
keys (dongles) or encryption that make data available only to the
vendor’s program, opaque file formats that may change arbitrarily
in new versions of the product and features deliberately designed to
differ slightly from the features on competing products.

2 | Chapter 1:What Is Open Source and Why s It Popular?

https://www.fsf.org
https://www.fsf.org

The vendors still strived for actual customer value, but it suffered
in the wake of artificial monopolies created by vendor lock-in. Cus-
tomers frequently had to wait months to years for bug fixes, even
critical security patches, because the vendor would choose to invest
its limited programmer staff in other areas such as new features. It
was a common practice for companies to make small changes to file
formats in order to wring more money from the installed base, by
forcing paid upgrades by customers who merely wanted to retain
access to previously created documents.

At the same time, as the World Wide Web was driving online com-
merce, internet servers relied mostly on a proprietary implementa-
tion of Unix running on bespoke server hardware; this solution
was expensive and a real barrier to new companies getting off the
ground. Something had to give.

In 1999, the groundbreaking Netscape web browser had become an
open source project called Mozilla, whose best-known product cur-
rently is the popular Firefox browser. This release set the stage for
open source to disrupt the status quo in the tech industry. Invest-
ments from leading companies such as IBM, Hewlett-Packard, and
Sun Microsystems helped launch many of the foundational open
source project communities, starting with a historic IBM announce-
ment in 2000 that they planned to spend $1 billion on GNU/Linux.
Once a powerhouse like IBM was willing to throw their brand
behind Linux, other businesses could take Linux seriously.

At the beginning of the open source movement, most established
vendors were notably skeptical and removed. They were afraid that
the obligations of strict licenses, such as the General Public License
(GPL) from the GNU Project, would legally impel them to publish
trade secrets from their proprietary code if mixed too closely with
open source code. They thought the ultimate success of open source
to be unlikely.

For instance, in 1999, the legal department at a major hardware ven-
dor in the server space at that time, Sun Microsystems, published
strict guidelines around shipping open source modules. They had
to be on a separate DVD from proprietary product executables,
with a separate installation to be completed by the end user (not
automatically included as part of any one-click installer for setting
up a product). Open source components were not to be tightly
coupled in Sun’s proprietary products (e.g., the software had to work

How Open Source Changed the Software Industry | 3

https://www.gnu.org/home.en.html

acceptably without any open source add-ons, and such add-ons
could cover only nonessential functionality). And above all, Sun
would not initiate any project under the GPL family of licenses.

Within less than two years, Sun would release the code for Open-
Office.org under the Lesser GPL (LGPL) because part of the strategy
for that project was to entice GNU/Linux desktop distributions to
bundle it, and because it needed to work well inside the GNOME
desktop interface, which used the GPL license. But although this
policy shift happened fairly quickly for a strategic reason, Sun was
not so quick to make similar shifts for their flagship software prod-
ucts: the Java programming language and Solaris operating system.
It took a full decade from the first proposals to actual open source
releases of both products, because even in a progressive culture,
change has a very long tail.

Another tipping point in the maturation of open source in the enter-
prise came when the stranglehold of proprietary Unix, networking,
and web technologies broke up under a combination of open source
technologies known as the LAMP stack. LAMP includes Linux as the
operating system, Apache as the web server, MySQL as the database,
and Perl or PHP as the programming language for backend servers.

The financial services sector here was the vanguard for a customer
revolt. The CTO at Morgan Stanley realized that Linux could be
used to drive a farm of relatively cheap commercial x86 servers
to provide acceptable compute power that could drive their online
business at a fraction of the cost of bespoke hardware and software.
This bold move came just as the first dot-com bubble burst in 2000,
and companies became desperate overnight to survive by trimming
costs. Within a year, all the major fintech companies were switching.

That same LAMP stack fueled the rise of a new type of company,
one that offered services on the web. Ecommerce was one such
service, but there were many others. Searching the web itself became
a service, with Yahoo!, AltaVista, and later Google offering very
high quality, zero-cost search engines through a web interface. The
“product” that actually drove the search engine companies’ success
was the capture, analysis, and sale of the data generated by those
searches, with market trends and intelligence available for a fee.
Experimental business models like this couldn’t be brought to life
without increasingly cheap hardware and open source software
without license fees.

4 | Chapter 1: Whatls Open Source and Why Is It Popular?

Open source became a democratizing force in the tech industry,
enabling new companies to thrive by driving down costs while ena-
bling offerings of better services. Even very proprietary companies
such as Apple started using open source. Indeed, an open source
project was the basis for the pioneering version 10 of Mac OS
(now macQS), driven by the return of Steve Jobs to Apple in the
late 1990s. Apple took a version of the historic Berkeley Software
Distribution (BSD) and released their core software under the name
Darwin. Apple was also choosing to release some of their own
products’ source code (notably WebKit, an important layout engine
used in many web browsers) under open source licenses, because
doing that could drive adoption and set up de facto standards.

Sun Microsystems was by now using open source to push their
Java agenda. Sun donated the source code for their Java Servlet API
to the Apache Software Foundation to create the Apache Tomcat
Project, driving mass adoption of Java over Microsofts competing
Active Server Pages technology.

Where Is Open Source Dominant?

If the average computer user—not a computer programmer or
dedicated free software user—runs down the list of installed appli-
cations, they will probably not see many open source applications.
Perhaps the user has Firefox, a leading web browser mentioned
in the previous section. The user may also have found it useful
to install LibreOffice (descendant of the OpenOffice.org suite men-
tioned earlier) for authoring documents, slide presentations, and
spreadsheets, GIMP for photo editing, or Thunderbird to manage
email. Most layout engines—the software that is central to web
browsers—are open source, the most important of these being the
previously mentioned WebKit as well as Gecko and Blink.

Applications do not tell the real story of open source and free
software. If a user could dig down into their operating system, and
further into the networking infrastructure underlying the web, they
would discover a world of open source. If they decided to try out
professional activities such as creating their own software or manag-
ing a collection of servers, they would establish an even stronger
bond with open source.

In short, open source programmers are particularly good at creat-
ing tools for their own use. Proprietary companies charge a lot of

Where Is Open Source Dominant? | 5

http://www.puredarwin.org
https://webkit.org/
https://tomcat.apache.org
https://www.mozilla.org/en-US/firefox/new/
https://www.libreoffice.org
https://www.gimp.org
https://www.thunderbird.net/
https://webkit.org/
https://developer.mozilla.org/en-US/docs/Glossary/Gecko
https://www.chromium.org/blink

money for such tools, and over time it has become clear that the
users of these tools—that is, programmers, professional computer
or network administrators, AI developers, etc.—do a better job of
meeting their own needs. While some companies still offer propri-
etary solutions in this area, a growing number simply offer open
source tools packaged up for convenient use.

Most open source software is hidden from an end user who is creat-
ing a spreadsheet or doing ecommerce, but open source is pervasive
and makes the end-user activities possible.

Governments have also jumped on the open source bandwagon.
In the early 2000s, many governments adopted laws or regulations
favoring the use of open source software in government, where
feasible. Notable examples include the United States, the United
Kingdom, and Peru, although in general the follow-through has not
matched the enthusiasm of the initial public flourish.

The triumph of open source can be traced in the evolution of
the world’s most famous software company, Microsoft. As late as
the ’00s, Microsoft managers were calling open source a “cancer”
and a danger to the software industry. But Microsoft is now one
of the top contributors to the Linux kernel and collaborates with
open source communities to create tools that work with Microsoft
products.

Aren’t Web Services Taking Over?

Web services, which you use every time you go online to visit a
retailer, bank, or professional service such as SAP or Salesforce,
are almost always proprietary. The topic of web services, also some-
times called software as a service (SaaS), lies beyond the scope of
this report, but we'll say a bit about it because of its widespread use.

Most web service companies want to fix bugs and add features
quickly. They use a variety of processes, such as Agile program-
ming, DevOps, and continuous integration (CI), to allow the quick
deployment of new versions of their applications. In other words,
when you log in to Facebook (or some other popular service) this
morning, youre probably using a different version from when you
logged in last night.

This pace is incompatible with the deliberative, collaborative pro-
cess used by open source communities. A company that adopts

6 | Chapter 1:What Is Open Source and Why s It Popular?

https://oreil.ly/03ehD
https://oreil.ly/fywhU
https://oreil.ly/T5Pot
https://oreil.ly/T5Pot
https://opensource.org/docs/bill-EngTrans.php
https://oreil.ly/R7INn
https://oreil.ly/VcSId
https://oreil.ly/VcSId
https://oreil.ly/QmUPN
https://oreil.ly/QmUPN
https://oreil.ly/5SfdK
https://oreil.ly/5SfdK

such continuous change will quickly lose touch with the open
source version of the software and is really using a totally different,
proprietary product. Thus, web services are not generally relevant
to this report. But a few popular web services—such as the Drupal
and WordPress content management systems and the Instaclustr
cloud service—provide their services as open source software and
work well with communities to update it.

Other reasons for SaaS companies to maintain a firm grip on their
software will be explored in Chapter 2.

Were not saying any particular practice is wrong. Continuous
updates, handled responsibly, can fix security problems and
improve the visitor experience in websites. The CI process can
save a lot of time and effort on open source as well as proprietary
projects.

Finally, many companies that offer proprietary web services also
contribute a lot of developer time and money to open source
software, which the companies recognize is superior for their infra-
structure. Later chapters will look at this practice.

Why Users Ask for Open Source

The impressive strength of the open source movement, and the
popularity of its products, can lead one to ask what makes it so
appealing. The benefits of the open source and free software models,
listed in this section, help to explain why companies try to ride the
powerful wave of open source. People with considerable experience
in using and procuring software, having seen the negative impact of
proprietary software, tend to look for free and open source alterna-
tives for the reasons cited here.

Avoiding lock-in

This is almost certainly the most compelling reason users adopt
open source. Anyone who has used software for a few years has
encountered horror stories of lock-in: companies that precipi-
tously raise prices, remove product features that users consider
crucial, go out of business without providing an upgrade path to
the companies’ abandoned customer bases, etc. An open source
project depends on contributions, but all users know that the
product will be there and will be open to all users so long as
enough of them care enough about the product to maintain it.

Why Users Ask for Open Source | 7

https://www.instaclustr.com/
https://www.instaclustr.com/

If a company bases its product on an open standard, the clients
might be able to find alternatives (proprietary or open source)
without having to change their code or behavior. However, few
proprietary products are based entirely on open standards—and
if the vendor claims to follow a standard such as SQL, clients
will still end up having trouble porting their move code because
(as the old joke goes) SQL offers “so many standards to choose
from?”

Accelerated ramp-up

With proprietary software, businesses have to contact the ven-
dor, negotiate licenses, and manage the software’s installation
and payments. All these steps are eliminated or streamlined
with open source. A few individuals can try out the software
as long as they need, without the end of a “free trial” looming
over them. They can then spread the software quickly as far
throughout the organization as its managers want.

Staff availability

This advantage of open source is often underestimated by its
advocates but is acutely noticed by adopters. Learning open
source software is cheaper and easier than studying proprietary
software (which might force learners to take courses that are
expensive and geographically remote). In an industry grievously
short of staff, open source makes it easier to find programmers
and administrators who know the product, an advantage partic-
ularly strong among the most popular open source projects.
Job-takers don't have to be trained in an unknown proprietary
offering but can work productively from day one with the famil-
iar open source tools.

Freedom from licensing tangles

Proprietary software is usually licensed on some scale. The
simplest cost model is “per seat,” but modern corporate environ-
ments make the calculations more calculated, and SaaS adds
even more variables. Such fuss is totally out of place for modern
container-based services that scale up and down over a period
of minutes. It is also inappropriate for interpreted languages
such as Python: a company can't license a compiler on a “per
seat” basis because there is no compiler, but no one would want
to pay a fee just to run a Python program.

8

Chapter 1: What Is Open Source and Why Is It Popular?

https://learnsql.com/blog/what-sql-dialect-to-learn/
https://learnsql.com/blog/what-sql-dialect-to-learn/

Proprietary licenses often require each employee (or an admin-
istrator acting on the employee’s behalf) to go through cumber-
some registration processes that involve typing in long random
numbers. In any case, the counting and monitoring required for
proprietary licenses is intrusive.

Adaptability
If you encounter a bug in proprietary software, you have to ask
the vendor to fix it, and they will do it on their schedule. They
may have other priorities. They may require you to upgrade to
a more expensive or complex version of the product to get the
bug fix.

With open source, you can hire someone to fix the bug and
contribute it back to the core project so all can benefit.

Having a say
Bug-fixing is one obvious advantage of open source, but it only
scratches the surface of open source’s benefits to involved users.
Instead of being at the mercy of a business plan cooked up by
a vendor, users in healthy open source projects set the agendas
and roadmaps.

If the bulk of the community chooses to go in a different direc-
tion from your needs, you can create your own branch of a
project and implement the changes you want. Usually, there is
a way to accommodate multiple pieces of functionality through
modules and options for building and configuring the software.
If you need to create your own version (known as forking), you
can do that.

Compatibility

Open source developers are used to making their tools work
with others. Commercial vendors also want to be compatible
with outside tools but are more selective about what they sup-
port or how much compatibility they offer. If you use an open
source tool and you need it to work with a hardware device,
operating system, database or other component that’s not yet
supported, you can go ahead and add that support.

The reasons cited in this section should demonstrate why so many
people insist on using open source for their software needs.

Why Users Ask for Open Source | 9

Sustainability and Health in Open Source
Projects

To compare open source with open core constructively, it’s impor-
tant to understand the traits and practices that sustain a robust open
source project. Leaders of the open source movement have long
been concerned that choosing an appropriate license isn't enough
to ensure a robust open source project. Some important properties
of open source development aren’t mentioned in the OSI or FSF
definitions, leaving wiggle room for interpretation and intentional
or unintentional abuse.

For example, open source projects work best when barriers to entry
and open collaboration are removed so that any practitioner can
rise through the ranks, collaborate with anyone else, gain reputa-
tion, and evolve to participate at any level. Several high-profile,
corporate-backed projects have failed because they never managed
to achieve this leveling, preferring their own employees’ contribu-
tions over those of nonemployees.

Overt and implicit exclusionary practices make it hard for women
and marginalized communities to participate in open source, just as
in other parts of society. During the past decade, most open source
projects that develop communities institute codes of conduct to
enforce fair and respectful behavior. To realistically attract commun-
ities that haven't historically participated much, truly committed
projects foster educational projects and other forms of outreach to
make the pool of available contributors grow.

Although Apple announced interest in fostering a community
around the development of their open source macOS core, Darwin,
they failed to follow through with the practices that companies use
successfully to create a community.

A similar problem ruined the prospects for VistA, a highly regarded
electronic health record software from the US Department of Veter-
ans Affairs. They “threw their software over the fence” from time to
time, but arrived too late at attempts to create a community, which
would have been critical to render the software useful outside of its
original setting in the VA. Several open source teams and companies
tried to pull together useful distributions but failed to work together
and never managed to achieve critical mass.

10 | Chapter 1: What Is Open Source and Why Is It Popular?

In addition to the attributes just described, what are the other con-
siderations that lead to a healthy open source project? Red Hat,
a leading provider of GNU/Linux distributions and open cloud
solutions, cites these things to consider for a healthy open source
project:

Project life cycle
This measure examines things such as how mature the project
is and whether it’s attracting new contributors. You can decide
from this research how you can best participate and whether the
project will last.

Target audience
A project should state how it expects to be used, and by whom.
From this information, you can judge whether the project is
meeting the right needs and whether it’s right for you.

Governance
A term with many definitions, governance in this context
describes how decisions are being made and how contributors
are managed and organized.

Project leaders
You should be able to identify easily who the current leaders
are—and how to contact them. A healthy project has leaders
who know its history and uphold its culture and vision.

Release manager and process
You're seeking here a process for releases that is well thought
out, well documented, and managed competently.

Infrastructure
We've mentioned that the coordination of a community is sup-
ported by its tools. Numerous tools support version control,
issue requests, builds and releases, communications, and so on.
Determine whether the tools on the project are meeting its
needs.

Goals and roadmap
These attributes deal with the long-term direction of the
project. The project should define goals and a roadmap and
communicate them clearly.

Sustainability and Health in Open Source Projects | 11

https://www.redhat.com/en/resources/measuring-open-source-health-brief
https://www.redhat.com/en/resources/measuring-open-source-health-brief

Onboarding processes
There are many ways to contribute to a project: coding, advo-
cacy, fundraising, documentation, and more. New contributors
in all these areas should be supported by documentation and
mentors.

Internal communication
People shouldn’t be going off in all directions doing whatever is
right in their own eyes. See whether they are communicating,
whether decisions are being preserved, and whether communi-
cation channels are adequate.

Outreach
Outreach tries to ensure that users, funders, and others with a
potential interest in a project know what it’s doing. This task can
be hard for many software projects, which can easily become
ingrown and focus only on people currently showing interest.

Awareness
How well do potential users and stakeholders know the project?
This attribute is related both to outreach and to target audience.

Ecosystem
As we've explained, open source projects work with many
others. The project should maintain good relations with the
projects that it uses or serves and should be a responsible mem-
ber of this ecosystem.

These guidelines have been compiled from decades of experience at
Red Hat and other participants working with open source projects.
The guidelines are very helpful to an organization looking to com-
mit to a specific project, whether that organization is new to the
open source space or longtime allies of open source. We will later
refer to some of these guidelines when looking at open core.

12 | Chapter 1: What Is Open Source and Why s It Popular?

CHAPTER 2

Why Companies Find Open Source
Daunting

The previous chapter showed why open source is popular. Vendors
want to be accepted by communities clamoring for open source, so
they promise an open source solution. But it’s harder than it looks to
build a company on open source.

The following list describes the main factors that give companies
pause. Most of these problems focus on the failure to develop a com-
munity around open source. If a company can’t develop a healthy
developer community, it is left having to fund all development itself
and enjoys no gain over proprietary development.

They are working from old revenue models.

The old, shrink-wrapped CD model of software distribution
had a simple business model: each user paid for a copy. In some
parts of the modern software industry, the pay-per-use model
still applies. Enterprise software companies license “seats” and
mobile device users pay the Apple App Store or Google Play for
a download. But the model is breaking down. For instance, very
few teams that develop mobile apps cover their development
costs by charging a dollar or two for each download. Often, they
offer the apps for free and link them to backend services.

A great deal of ingenuity has gone into deriving revenue from
software. You could spend years studying the business models
of industry giants such as Google and Facebook. Many compa-
nies use the freemium model, giving you a certain set of features

13

https://www.wired.com/2008/02/ff-free/

and disk space and expecting some users to pay for upgrades.
Some other strategies—offering analytics, for instance—could
work well with open source software, but others would not. The
last chapter of this report looks at models that seem successful
over the long term.

They don’t want to lose control over the direction of the software.

The previous chapter explained that open source works because
users get to determine features and the general direction of the
project. One would think that this responsiveness to user needs
would be a great boon to a company. Yet many companies start
with their own view of what they need to succeed and are loath
to cede control to users.

They don’t want a competitor to take advantage of their work.

The worst potential example of the previous concern—loss of
control—would occur if another company built a better product
on the software released as open source. Even a moderately suc-
cessful competitor could eat into the original vendor’s customer
base enough to ruin their business.

They don’t know how to manage a community.

Perhaps a company is willing to give its community a lot of
control over its roadmap. But community management is diffi-
cult, a discipline all its own. Open source companies often hire
community managers, but the managers might not have enough
autonomy or might lack sufficient gravitas in the company to
hear the community’s needs. A combination of advocacy, organ-
izing, good communications, investment in tools, and other
skills go into community management. A failure in this area
leaves potential collaborators frustrated, and they don't stay
around long if they can tell that the company is insincere or
unwilling to fund a healthy community.

Their pace of development makes community participation hard.

As mentioned in the earlier sidebar “Aren’t Web Services Taking
Over?” many companies want to develop new features quickly.
They have internal development processes that put the onus on
small, independent teams moving fast.

Open source also thrives on small, independent teams. But
the projects usually corral more reviewers and take time for
more communication between developers working on different

14

| Chapter 2: Why Companies Find Open Source Daunting

branches. Roadmaps tend to involve more deliberation. The
projects move slower than SaaS projects, putting user satisfac-
tion above innovation. A company adopting open source must
learn to be satisfied with the pace established by its community.

They need to keep people coming to their site to develop volume.
Companies such as Google and Facebook rely on huge par-
ticipation, particularly for data collection and analysis. Their
strategies have both positive and negative effects that have been
extensively analyzed in the press. If your service is based on
open source software, people who want to opt out of your
data collection (or whatever youre doing) can easily set up a
competing site, and you lose a chunk of your potential users.

They lack confidence in their code.

Good software engineering takes a lot of expertise. All across
the computer industry, programmers and users suffer from the
technical debt of sloppy code. Fast-evolving code bases need
careful adherence to standards more than anyone, in order to
avoid bugs and maintenance headaches, and yet it is precisely in
such fast-evolving environments that developers are most likely
to opt for a quick and dirty approach.

Furthermore, many developers follow the risky practice of
embedding passwords or other corporate secrets in their source
code. Going through all the code to remove these risky details is

a big job.

In short, many companies reject open source because they don’t
want to show the public how poorly they code.

They want to hide something they’re doing.

Code might reveal thinking or product planning that the com-
pany wants to treat as trade secrets. There also might be less
commendable reasons for hiding what they’re doing. Privacy
violations and other abuses are rampant in modern corporate
coding. If companies decide to release some code as open
source, they risk that users will find out what’s happening
behind the scenes, leading to bad public relations and canceled
accounts.

Their developers are egotistical about their skills.
Sometimes managers are willing to let communities contribute
code, but their own developers reject the contributions. Some

Why Companies Find Open Source Daunting | 15

teams even write their own code to reimplement features that
customers submitted. The developers in the company may say
that outside code does not meet their coding standards or qual-
ity measures. And that may be true but rejecting contributor
code is still a bad practice.

First, in a healthy open source community, people who know
the community’s standards invest substantial time in mentoring
other people. Outsiders can progress up the contribution ladder,
contributing bigger and bigger changes, and eventually becom-
ing core committers who can approve other people’s changes. If
this is not happening, the company is open source in name only.

Companies who suffer from these fears might still jump on the
open source bandwagon for several reasons: they see how quickly
the software is adopted, they recognize that end users and develop-
ers trust open source, and they hope to get free donations of bug
fixes and even new features from a community. But for the reasons
cited in this chapter, some companies are trapped in a proprietary
mindset in one or more ways. The most important concerns are
to make sure that customers still need the company’s paid services,
and to prevent competitors from gaining access to those important
features. That's why so many try to split the difference through an
open core strategy.

16 | Chapter2: Why Companies Find Open Source Daunting

CHAPTER 3
What Is Open Core?

Open core consists of proprietary code mixed with open source
code, usually provided in a convenient distribution or package for
pay. The open source part is often labeled the community edition,
demonstrating that the company recognizes the value of building
a community around the project. (Terminology shifts over time,
though.) The community edition is free for download and might
be released along with tools that open source communities typically
use to manage their projects. In order to meet the vendor’s goal of
attracting users, the community edition should be a coherent piece
of software that performs a set of the desired operations, sometimes
rich in features and sometimes lacking.

The proprietary features are released separately with a proprietary
license and have often been sold under the label enterprise edition.
The name suggests that you had better use this edition if you run a
business that depends on the software. Vendors can be very sophis-
ticated in evaluating community and enterprise needs: for instance,
the enterprise edition may add useful scheduling, modeling, analy-
sis, security, high availability, and other tools that enterprises want.

Because (as the term open core suggests), the open source commu-
nity edition contains a lot of core functionality, it is attractive to
academic environments, tinkerers, learners, and small businesses
that can get something from its functions without the enterprise fea-
tures. The vendor hopes that community members will contribute
to the open source edition, thus increasing the value of the whole
product. Furthermore, the open source edition can furnish trained

17

staff that enterprise customers can hire, and small businesses may
switch from the community to the enterprise edition as they grow.

Open core is not a new idea—in fact, it has an extensive history.
As early as 1999, in his “Magic Cauldron” paper, Eric Raymond
described several business models in which open source could fur-
nish a component. Open core fits into Raymond’s “Loss-Leader/
Market Positioner” model, wherein open source is used to entice
customers to try a product at no cost, along with paid add-ons
or other upsell opportunities that are proprietary. Around 2000,
Richard Stallman, founder of the Free Software Foundation, sug-
gested a related hybrid model to Sun Microsystems for Java.

By 2004, the buzz around open source forced procedural changes on
the Apache Software Foundation (ASF), the leading sponsor of open
source projects both then and now. They discovered that their repu-
tation for hosting true open source projects was being compromised
by prospective project donors who made splashy announcements
about pending contributions but never followed through or failed to
change their way of working if they did actually contribute the code.

The ASF thus moved to protect their brand by limiting its use to
board-approved “top level projects” They also created the Apache
Incubator, which required all donations to enter an incubation
phase. During incubation, the original contributors had to clear
away legal encumbrances, learn to use “the Apache Way” to build
a multiparty community, and successfully release a stable version
incorporating changes donated by that community before they
could apply to become a “top-level project” and gain the right to
use the Apache brand.

Thus, the ASF has continued to champion open source without
being diverted from that path by companies trying to capitalize
falsely on its brand. Branding and trademarks are routinely used in
open source projects now to prevent fraud and the dilution of terms,
particularly in famous projects such as Java and Linux.

Most of the new projects coming to the ASF were from large firms
with very deep pockets. Smaller startups that wanted to engage in
open source were often discouraged from doing so by their funders.
Venture capitalists (VCs) are still struggling to modify their 1990s
expectation of “10x growth in five years”

18 | Chapter3:What Is Open Core?

https://oreil.ly/8VSny
https://oreil.ly/icNIe
https://oreil.ly/icNIe
https://www.apache.org

Early investors in open source companies often tried to split the
difference by requiring some elements of the products they funded
to be relicensed and make some of the code proprietary in order
to “shelter value” These same VCs encouraged adoption of hybrid
business models, one of which was open core. The term open core
was formalized by Andrew Lampitt during the downturn of 2008,
when pressure to “shelter value” was rising.

But curiously, the term open core remains ambiguous. Investors with
commercial interests in open core software companies often try to
redefine the term or broaden its meaning in confusing ways.

A recent video from a roundtable reveals that managers tend to
see open core on a kind of spectrum or even matrix (the term
orthogonal got thrown around) and disagree about the definition.
The term has recently been reoriented by Joseph Jacks, founder of
the Open Core Summit. Jacks applies open core to “any enterprise
that is dependent on open source” and equates it to another term,
commercial open source software (COSS). Unfortunately, Jacks’s
usage threatens to dilute the term to the point where it loses any
value. We saw in Chapter 1 that most organizations do professional
computer development and administration with open source tools,
and one could go down a rabbit hole trying to determine what
makes a business “dependent” on them.

Many people have built proprietary software on open core plat-
forms and tools over the decades; this does not compromise the
open source projects. It’s extremely common to write a proprietary
program and compile it with an open source compiler, write a
proprietary plug-in for an open source browser, run a proprietary
ecommerce site using an open source database to store your data,
and so forth—all legitimate practices that preserve the integrity of
open source software. Open source, open core, and fully proprietary
companies all do these things. The relationship becomes a problem
when it bends the open source project to the proprietary needs of
the vendor, as described in this chapter. That is the open core we
warn about.

Risks of Open Core for Customers and Vendors

Open core, when presented honestly, is just as legitimate a way to
derive revenue from software as the strategies of proprietary ven-
dors. Some companies, unfortunately, are not so honest. They may

Risks of Open Core for Customers and Vendors | 19

https://www.youtube.com/watch?v=DnjmsaAYZfc
https://2020.opencoresummit.com

provide a community edition that isn’t really viable, or suddenly
stop support for the community edition in the hope of forcing users
to upgrade.

We think that many open core companies are sincere and want
to treat both community and enterprise users well. And because
so many companies have been trying open core, the model must
be working for some companies for at least a time. In particular,
if a project is small, with a niche audience, the community might
appreciate and support an open core approach.

Nevertheless, observers in computing have seen the risks of open
core for both companies and their clients (see for instance a widely
read posting by Simon Phipps, a longtime leader in open source).
Open core might not deliver the benefits for which open source is
well known.

First, customers who move up to the enterprise edition lose the
benefits of open source. They suffer from lock-in and lose their right
to determine the project’s roadmap.

The biggest risk of open core is for the company to neglect the com-
munity edition. The companies adopting open core, as explained
earlier, are trying to preserve business models based on a propriet-
ary mindset. Because they are deriving revenue from the licensing of
the software, the result is predictable: they will put more and more
of their investment in the enterprise edition and eventually abandon
the community edition.

Ideally, outside developers would continue to enhance the commu-
nity edition and give the company leeway to develop the proprietary
features—increasing functionality for all. But this happy outcome
depends on a lot of unlikely things going well; long-term success
is restricted to a small set of the most popular projects. Companies
with an open core approach generally begin with honorable inten-
tions but walking the tightrope between community stewardship
and commercial pressures is challenging.

The company usually feels that it needs to maintain control over
the core in order to ensure that it supports its enterprise edition.
Contributors see good features being rejected and leave the project
in frustration. As described earlier, companies might cite all kinds of
seemingly legitimate reasons for refusing to trust community contri-
butions, but underlying the justifications is fear of losing control.

20 | Chapter3: What Is Open Core?

https://webmink.com/essays/open-core/

What if a robust, effective community does develop? In that case,
the benefits that led to the dominance of open source come into
play. The community can surpass the company’s offerings and make
the company obsolete.

This danger is not theoretical; it happened to an open core company
called Eucalyptus, which developed orchestration software for build-
ing infrastructure as a service (IaaS) platforms. One of their clients,
NASA, was large and well-endowed enough to create a big set of
enhancements that they offered back to the community. Eucalyptus
rejected the enhancements because it had a different plan for evolu-
tion, so NASA teamed up with Rackspace and created OpenStack.
This open source project quickly drew support from large compa-
nies in telecom and other major industries that wanted to introduce
virtualization into their own data centers.

OpenStack quickly developed a very strong community, consisting
mostly of large cloud and telecom companies (including VMware)
and remains a central fixture of virtualization, whereas Eucalyptus
entered the dustbin of computer history.

To sum up, companies dealing in open source must maintain the
trust and cooperation of their community. If they end up in conten-
tion with that community, one or the other wins—and the loser goes
away. Open core sets up a fundamental source of contention that
has a high chance of leading to the demise of its balance between
company and community.

Community members can easily underestimate the risks they are
adopting. The company is assuring the community that it is com-
mitted to open source. But its heart (and pocketbook) are in the
proprietary extensions. People may contribute changes to the open
source core in good faith, and then watch the company go off in a
direction that the community does not approve of. Or the customers
may try out the enterprise edition and find themselves victims of the
same strategies used by proprietary companies to lock them in and
disenfranchise them.

How Open Core Undermines True Open Source

Open core looks like a good plan at the beginning. It looks like you
get to be cool by championing open source, while still “sheltering
value” to make your funders happy—best of both worlds, right?

How Open Core Undermines True Open Source | 21

Unfortunately, very few organizations can actually muster the agility
required to follow the open core model without either undermining
their community or sacrificing sheltered value in an effort to pre-
serve leadership.

Lets say an open core project is wildly successful initially. Lots
of people are using the open source loss leader, and enough of
them are paying for proprietary add-ons to justify continued devel-
opment. A thriving community of developers and users appears.

What typically happens next is that some members of the commu-
nity start clamoring for the project to release the code for some
or all of the proprietary add-ons under an open source license.
If the project fails to do this in a timely fashion, the community
may simply reimplement the proprietary features they want in open
source, often in ways that cause problems for the project owners.
Often the project is forced to comply with community demands
vis-a-vis proprietary features to forestall gains in popularity for the
community versions. Vendors who give in and open up their propri-
etary features have to later come up with new innovations to justify
continued tariffs. It is a very rare project that can out-innovate a
thriving open source community, as we saw earlier with the example
of Eucalyptus and OpenStack.

Let’s step back a moment and look at the principles that make open
source work. It requires a shift in thinking about value creation,
because it alters where and how value accretes. For many of the
spectacular acquisitions during the past few years, the key factor
in the deal was neither proprietary intellectual property nor a reve-
nue stream guaranteed by user lock-in. The attraction that drove
acquisition value was nearly always deep and loyal adoption and the
influence of the developer/user community around the project. The
communities were the focus, for instance, behind IBM’s purchase
of Red Hat, Microsoft’s purchases of LinkedIn and GitHub, and
(to at least some extent) Facebooks purchases of Instagram and
WhatsApp as well as Microsoft’s purchase of Activision Blizzard.

Its a long shot, at best, that a given open core project will be able
to navigate community demands, pressure to innovate, and funder
impatience while continuing to produce high quality, reliable soft-
ware. This is the real reason that open core is less valuable than real
open source alternatives.

22 | Chapter3: What Is Open Core?

CHAPTER 4

Distinguishing Open Core from
Other Trends

We have made some claims fraught with controversy in the previous
chapters. We have pointed out that the meaning of the term open
core is unclear and that both vendors and customers can misinter-
pret what they are getting. In this chapter, we distinguish open core
from corporate or community practices that might seem confusingly
similar.

Red Hat

Red Hat is the most financially successful company based on open
source, having been acquired by IBM for $34 billion in 2019. Many
people deny that Red Hat is truly an open source company. We
argue that it has always been and remains one.

Red Hat’s flagship product, Red Hat Enterprise Linux (RHEL),
remains 100% open source. Conveniences such as easy installation
or integration of tools into a dashboard do not impinge on that
status, in our opinion. When you run RHEL, you are running a
distribution of GNU/Linux, plain and simple.

One of the authors of this report (Andy) does freelance work for
Red Hat and can testify to the enormous contributions that devel-
opers there are making to “upstream” open source projects. Other
companies, of course, make big contributions too, but Red Hat’s
strategy does not involve extending the projects with proprietary

23

software. They are very up front about basing their cloud services
on open source components.

As a case study, Red Hat is unique. That’s because they focus on
the operating system, a very complex and fussy piece of software
with many compiler and hardware interactions and external depen-
dencies. Customers have been willing to pay Red Hat to install
and maintain GNU/Linux, whereas one might not find customers
willing to pay for similar services in other kinds of software. Red
Hat’s original Linux strategy has become diluted as it moved “up the
stack,” making major investments in Java, the cloud, and other areas.
But the strategy seems to continue to work for the company, judging
from recent reports of a 17% increase in earnings.

MySQL

This is the most popular open source database engine, the critical M
in the historic LAMP stack mentioned earlier. Before the company
MySQL AB was taken over by Oracle as part of their larger acquisi-
tion of Sun Microsystems, it pursued a complex strategy, but one
that fit firmly within the open source tradition.

True, MySQL encouraged customers to pay for individual features,
and even sometimes allowed a customer to use a feature in a special,
proprietary version for a few months. But every feature was soon
incorporated into the open source version. The Business Source
License (BSL), created by the founders of MySQL, formalizes a delay
in the release of software as open source.

MySQL also employed dual licensing. If you ran the database as a
separate program next to your web server or other software, you
could use the open source license. If you wanted to embed the data-
base into a proprietary offering, you needed to license the database
under a separate, proprietary license for which you had paid.

The dual licensing strategy seems particularly apt for databases
because many customers would like to embed them in other soft-
ware. As evidence for this claim, another company known for dual
licensing was Sleepycat Software, which licensed a database product
called Berkeley DB. (Sleepycat invented dual licensing and got it
approved by the Free Software Foundation.)

MySQL has become open core since the Oracle purchase. However,
there is still a strong open source offering. The creator of MySQL,

24 | Chapter4: Distinguishing Open Core from Other Trends

https://oreil.ly/vdte6
https://itsfoss.com/making-the-business-source-license-open-source-compliant/
https://itsfoss.com/making-the-business-source-license-open-source-compliant/
https://oreil.ly/TCJdb
https://oreil.ly/TCJdb

Monty Widenius, left Oracle and forked MySQL to create MariaDB,
a variant that gained a lot of users. The last we heard, Oracle and
MariaDB cooperate on sharing open source code.

Corporate Funding

Most software projects depend on funding from large institutions,
whether private or public. The funding does not diminish their open
source status. If the license is open source, the software is too.

It’s also common practice to take donations from particular custom-
ers to fund particular features, and this is totally compatible with
open source. As we mentioned in the section about MySQL, we
would not deny open source status to a project that does a very
limited bit of open core by allowing a company exclusive access to
a feature for a short period of time. We think that a project enters a
danger zone when it sets up a long-term open core component.

Closed Core

This is an extremely popular practice whereby a company contrib-
utes to open source projects that are not central to its business. For
instance, major cloud-based companies such as Google create or
work on a lot of tools for administration, analysis, and so forth.
Kubernetes is a prime example. The term closed core was first
assigned to this practice in a 2011 blog post by Andy, one of the
authors of this report.

Closed core is different from open core because a company is not
trying to make money directly from its contributions in closed core
and does not layer proprietary features on the open source compo-
nent. Closed core is one of the actual models covered by the Open
Core Summit mentioned in Chapter 3.

Dual Licensing

Dual licensing was mentioned earlier in the section on MySQL. This
practice is not a mix of open and closed features, like open core.
Dual licensing means that the same software can be licensed (and
charged for) in different ways defined by the vendor. The practice is
pretty common in software as well as other industries. Depending

Corporate Funding | 25

https://mariadb.com
http://radar.oreilly.com/2011/12/could-closed-core-prove-a-more.html

on the needs of the customer, a vendor can offer the same products
under different pricing schemes.

InnerSource

InnerSource is not a licensing model, but an organizational practice
inspired by open source. Large companies are using InnerSource
to develop internal or proprietary software. The managers and
developers study the communications and other methods used by
open source communities, described in Chapter 1, and mimic them
on internal projects. Sometimes companies employ people who
are familiar with open source practices to work on InnerSource
projects, in order to benefit from their expertise. But the results are
not open source (unless the company decides to open the software
later).

Source Available

Many proprietary companies offer their source code to customers
willing to pay for the privilege. Unix is a famous example; many
people treated it as free software (before that term was invented) and
wrote books about how to change and recompile Unix source code.
A book published in 1977, A Commentary on the Sixth Edition UNIX
Operating System by John Lions, drew extensively on the source
code, became a runaway success, and remains a computing classic.
But Unix was definitively not free software, as academics altering
the software discovered when its owner, AT&T, sued them in the
early 1990s and when the Linux developers were similarly sued by
AT&T’s successors.

Making the source available is a convenience to customers who want
to check for bugs and perhaps even make local enhancements to
their version of the product. But the customers are not allowed to
share the original code or their changes outside the organization.
The original vendor maintains full control.

Open Hardware Cores

We mention this hardware project simply because the name is
similar to the software practice in this paper. OpenCores has noth-
ing to do with this reports topic. It is an open hardware project
that collaboratively develops hardware chips and boards and places

26 | Chapter4: Distinguishing Open Core from Other Trends

https://oreil.ly/nuPkT
https://oreil.ly/nuPkT
https://oreil.ly/B5gzm
https://oreil.ly/B5gzm
https://oreil.ly/CcHNz
https://oreil.ly/CcHNz
https://opencores.org

the designs under open licenses. The open hardware movement
complements open source software and is inspired by many of the
same principles but is a distinct issue.

Source Available | 27

https://opencores.org/licensing

CHAPTER 5

Why Open Source Is Better Than
Open Core

The advantages that open core vendors promise to their customers,
and even the advantages that vendors naively expect to gain from
open core, rarely pan out in practice. This chapter lays out some of
the reasons that open source is taking over software infrastructure,
while open core companies routinely disappoint their customers
and don’t thrive.

Open Source Mitigates Vendor Lock-in

The proprietary features in open core offerings are limited to the
company providing those features, just like any proprietary soft-
ware. Just as you can’t easily move your spreadsheets from one
program to another without breaking something, you can’t easily
leave an open core company for a competitor.

Nor can you port a feature you like from a competing product
into the proprietary open core product. In contrast, open source
projects share ideas all the time. Many developers who work for one
open source project take their code to other projects, even projects
commonly seen as competing.

29

Open Source Nurtures a Healthy Community
That Drives Better Innovation

As described earlier in this report, a robust open source project
enjoys a diverse community of people who work on it individually
or together. The sun never sets on some open source communities.
This community may or may not work faster than a team hired by
an open core company. If the community can innovate faster, the
business model of the open core companies breaks quickly as the
community edition surpasses the proprietary edition in features or
quality.

But even if a dedicated team of professional programmers can move
faster than the community, what the community produces often
proves superior in the long run.

First, the community consists of the most intensive users of the
software, so their ideas for both features and user interfaces are
probably more in line with what the customers want. Were not
looking at the movement through rose-colored glasses: we know
that open source communities can be exclusionary and can develop
destructive factions. Even so, the open source community is less
likely to suffer from groupthink than a tight-knit team run by a
single company.

Similarly, customers who rely on open source software are likely to
venture into more adventurous changes than the development team
at the open core company. A company tends to have short-term
goals. It may launch a major overhaul or new direction, but probably
only one at a time. On a large open source project, several teams
can be branching off into wildly different areas, and the successful
branches are incorporated into the project.

Open Source Increases Code Quality Through
External Code Inspections

Once again, groupthink weakens a product. Companies brave
enough to submit their code to outside review can fix more bugs
and security problems. Although not all customers have the skills
to evaluate software, many will. They are motivated to spend time
scrutinizing the code on which their organizations rely. Because the
customers’ professional staff can fix open source bugs as well as find

30 | Chapter5:Why Open Source Is Better Than Open Core

them, open source projects are less likely to have known bugs that
fester unfixed for years.

Security is not ideal in open source, to be sure. The notorious
Heartbleed bug in OpenSSL and the more recent security flaw in
Apache Log4j proved that. But two points are important to note:
First, OpenSSL is a complex, subtle piece of security software requir-
ing specialized expertise to understand. Second, the bug was fixed
quickly once it was discovered by researchers. (Replacing existing
deployments took longer because it depended on the individual
actions of downstream users.)

Open Source Increases Code Quality Through External Code Inspections | 31

https://heartbleed.com/
https://www.cisa.gov/uscert/apache-log4j-vulnerability-guidance
https://www.cisa.gov/uscert/apache-log4j-vulnerability-guidance

CHAPTER 6

Is Your Vendor Doing True
Open Source?

This report has demonstrated the benefits of open source for com-
panies and their clients alike. But as we've seen, companies try to
present themselves as open source while behaving very differently.
They may be honestly confused about where their strategies depart
from open source or may be deliberately hiding strategies for lock-
ing in clients. This chapter helps you separate true open source
organizations from those who just masquerade as open source.

Is 100% of the Code Licensed Under an
Unmodified, 0SI-Approved License?

The license fundamentally divides open source from open core. A
company can certainly offer different products or services under
different licenses. But the product or service you want to use should
be 100% open source. An open core strategy is a red flag that
should warn you off. Even if the features that are proprietary are
not features you want to use, the company’s adherence to the flawed
open core model will weaken their commitment to the open source
part of the product.

Also, make sure that the company hasn't modified a license they
adopted from the OSI or FSE. Any change to the license, even an
apparently benign change, signals danger. Even in the best case,
the company adding or subtracting a clause is departing from best

33

practices, because the OSI-approved licenses have been extensively
examined by the best programming and legal minds. In the worst
case, the change to a license reflects a hidden plan to lock in custom-
ers or break the company’s promises to the community.

Is There a Diverse and Healthy Community
Around the Code?

Community participation reflects both a company’s commitment to
open source and the quality of the product or service.

Look for signs of outsider participation: discussions of the code
on forums, bug reports containing source code, and check-ins of
code by nonemployees. You should see strong participation if the
project is really open source. You should also see contributors who
moderate conversations so that arguments are resolved peacefully
and people are listened to respectfully.

Is the company accepting code from outsiders? Some companies
reject major changes. A company that requires all the code to be
written by its own team probably also has a hidden agenda. Regard-
less of the reason they cite for rejecting outside contributions, the
effect is to build up a code base owned entirely by the company.
(Some companies also require contributors to assign copyright and
ownership to the company, which may represent a legitimate pre-
caution or something more sinister.) At some point, the company
could well take the code private. The code that was released earlier
can still be used by the open source community, but further changes
by the company are proprietary and will form the basis of a propri-
etary product.

s the Open Source Project Managed by an
Independent Body?

An open source project is more sustainable if it is managed by a
vendor-neutral consortium. There are several large foundations who
know how to manage projects and can help open source projects
maintain their funding, infrastructure, and communities. The Linux
Foundation, Eclipse Foundation, and Apache Software Foundation
are probably the most trusted. A project working with one of these

34 | Chapter6:IsYour Vendor Doing True Open Source?

foundations is on a relatively firm footing, although ultimately its
success depends on the skills and dedication of its own leaders.

It’s hard to set up a foundation dedicated to one open source project
but doing so is preferable to having a company run the project
internally. The company in charge of a project is always tempted to
distort goals to favor its business needs, although many companies
do manage open source projects fairly and successfully.

How Does the Vendor Make Money?

Some ways of funding a company are more compatible with open
source than other ways. We'll explore these issues more in Chap-
ter 7.

As mentioned earlier, some companies are frankly proprietary, pre-
senting a service as “closed core,” but contributing to software infra-
structure projects that are open source. If strong communities build
up around these projects, support from proprietary companies is a
fine model.

Pure open source is a difficult model, but possible. The largest
example is Red Hat, which creates and contributes to numerous
open source projects. Red Hat makes money by offering services
that range from support for computing environments to providing
ready-made cloud solutions.

The cloud solution is probably the most common way to make
money from open source directly.

But beware of a company that makes money from selling data from
a cloud service or mobile app. The company cannot sustain this
business model if other organizations use the software. Selling data
is sometimes also abusive of people’s privacy, although not necessar-
ily so—some companies do a good job anonymizing data and selling
it for legitimate purposes.

Is There a Published Roadmap for the Project?

Because an open source project welcomes contributions from the
public, its goals should be clear. It should be flexible enough to han-
dle innovators with other ideas, but its leaders should present both a
coherent vision for the future and a specific list of goals. Companies
that do things without discussing them thoroughly with outsiders

How Does the Vendor Make Money? | 35

are pursuing a proprietary strategy even if they release the code
under an open source license. Healthy community participation is
squelched by secrecy.

36 | Chapter6:IsYour Vendor Doing True Open Source?

CHAPTER 7

How to Sustain a Company While
Supporting Open Source

We hope that this report has clarified the difference between open
source and open core and has persuaded you to adopt true open
source as a user, developer, or vendor. What remains is to look at
the current state of companies devoted to open source. How are they
achieving sustainability?

We don’t deny that open source projects have to work hard to
get funding. Small ones often creep along on the backs of a few
dedicated volunteers who might give up any day. Some observers
blamed the Heartbleed security flaw, mentioned earlier, as a problem
of insufficient support, and the same diagnosis has been aimed at
the recent security flaw found in Log4j.

Still, projects find a way to keep going. We review several current
models in this chapter.

Closed Core

This option, introduced in Chapter 4, is the most common source of
funding for open source projects. Companies often don't try to run
the open source projects; instead, they are handed over to a founda-
tion. But companies can be intimately involved in these projects. In
addition to donating money, they can put their own programmers
on the projects, deliberate about the future of the projects, and
create branches for their own use that they contribute back to the

37

https://oreil.ly/sO7fb

upstream projects. Such contributions help to ensure the continued
existence of projects that the companies depend on internally.

Although most companies engaging in closed core are in the soft-
ware business themselves, they can be in any business. The auto-
motive industry, which is quickly becoming a software industry,
supports open source projects.

Cloud Offerings

This business model bases revenue on open source by offering
access to one or more open source projects as a Saa$ or platform as
a service (PaaS) offering. In other words, users are able to download
the software and install it on their systems. Many choose to pay the
vendor because it’s cheaper or more convenient to use the vendor’s
cloud service. WordPress and Drupal are popular web hosting serv-
ices offered under this model.

It would muddy the concept of open core to apply it to a cloud
offering based on open source software. There is even a restrictive
GNU license (the Affero GPL) that blesses this arrangement as free
software.

Cloud Services Veer Toward Open Core

A huge number of cloud services offer access to popular open
source tools. These are tools that programmers and administra-
tors know and love; tools used for hosting, monitoring, analytics,
graphical modeling, and numerous other things. But to be honest,
it's hard to find cloud services that are restricted 100% to open
source. It can also be hard to assess, just from viewing the services
advertised on their websites, whether they also have proprietary
offerings. So today, open core is more prevalent than open source in
cloud services.

Service and Custom Development

Programmers and system administrators who are familiar with open
source offerings—and perhaps developed them—can offer to install,
manage, monitor, and customize the offerings. This is a classic way
for programmers to make a living, even with proprietary software.
Several scenarios fall under this business model:

38 | Chapter7: How to Sustain a Company While Supporting Open Source

http://www.fsf.org/licensing/licenses/agpl-3.0.htm

o Teams that create and maintain the particular open source soft-
ware they’re supporting

» Experts in one or more open source tools

o+ Consultants with general backgrounds who know open source
tools along with proprietary ones

In any case, this solution is mostly for small organizations because
it doesn't scale well. A programmer can work on only a certain
limited number of customization projects at a time; it requires a
lot of experience to be efficient and offer value for services, so the
model is not for everyone.

Nonprofit Status

Our final model is to apply for grants as a nonprofit. The MITRE
Corporation has been doing strong work for decades as a nonprofit,
living off government contracts.

Conclusion

Many companies capitalize on the public relations halo surround-
ing the popular open source movement without understanding or
authentically engaging in open source. They've tried in several ways
to redefine open source to defend their market position or lack
of a suitable business model, while claiming to be friendly to collab-
orators. Some have built open source communities around their
products without thinking through the implications.

Open source has proven its lasting value. Open core, on the other
hand, is a risky balancing act that reflects obsolete approaches to
markets and software value. We believe that this report has provided
convincing arguments in favor of choosing the real thing.

Nonprofit Status | 39

https://www.mitre.org
https://www.mitre.org

About the Authors

Danese Cooper is a well-known leader and advocate for open
source, with 30-plus years of experience in technology and 22 years
contributing to the open source movement. She served for four
and a half years as head of open source software at PayPal, Inc.,
during which time she was the first chairperson of the Node.js
Foundation as well as the founder of InnerSourceCommons.org
and author of Adopting InnerSource for O’'Reilly. Previously, Ms.
Cooper served as the CTO of Wikimedia Foundation, Inc., as the
first chief open source evangelist (and founder of the world’s first
open source program office) for Sun, and as senior director of open
source strategies for Intel. She concentrates on creating healthy open
source communities and has served on the boards of the Drupal
Association, the Open Source Initiative, and the Open Hardware
Association and has advised Mozilla, the Linux Foundation, and the
Apache Software Foundation. She also runs a successful open source
consultancy which counts the Bill & Melinda Gates Foundation, the
SETI Foundation, Harris Corporation, and Numenta as clients. She
has been known to knit in meetings.

Andy Oram is a writer and editor in the computer field. His edito-
rial projects at O'Reilly Media have ranged from a legal guide cover-
ing intellectual property to a graphic novel about teenage hackers.
Andy also writes often on health IT, on policy issues related to the
internet, and on trends affecting technical innovation and its effects
on society. Print publications where his work has appeared include
the Economist, Communications of the ACM, Copyright World, the
Journal of Information Technology ¢ Politics, Vanguardia Dossier,
and Internet Law and Business. Conferences where he has presen-
ted talks include O’Reilly’s Open Source Convention, FISL (Brazil),
FOSDEM (Brussels), DebConf, and LibrePlanet. Andy participates
in the Association for Computing Machinery’s policy organization,
named USTPC, and is on the editorial board of the Linux Professio-
nal Institute.

	Cover
	Instaclustr
	Copyright
	Table of Contents
	Preface
	Chapter 1. What Is Open Source and Why Is It Popular?
	How Open Source Changed the Software Industry
	Where Is Open Source Dominant?
	Why Users Ask for Open Source
	Sustainability and Health in Open Source Projects

	Chapter 2. Why Companies Find Open Source Daunting
	Chapter 3. What Is Open Core?
	Risks of Open Core for Customers and Vendors
	How Open Core Undermines True Open Source

	Chapter 4. Distinguishing Open Core from Other Trends
	Red Hat
	MySQL
	Corporate Funding
	Closed Core
	Dual Licensing
	InnerSource
	Source Available

	Chapter 5. Why Open Source Is Better Than Open Core
	Open Source Mitigates Vendor Lock-in
	Open Source Nurtures a Healthy Community That Drives Better Innovation
	Open Source Increases Code Quality Through External Code Inspections

	Chapter 6. Is Your Vendor Doing True Open Source?
	Is 100% of the Code Licensed Under an Unmodified, OSI-Approved License?
	Is There a Diverse and Healthy Community Around the Code?
	Is the Open Source Project Managed by an Independent Body?
	How Does the Vendor Make Money?
	Is There a Published Roadmap for the Project?

	Chapter 7. How to Sustain a Company While Supporting Open Source
	Closed Core
	Cloud Offerings
	Service and Custom Development
	Nonprofit Status
	Conclusion

	About the Authors

